Daoning Wu, Min Yang, Jun Yu, Michael Dyballa, Ping Yang, Mingfeng Li, Guangjin Hou, Michael Hunger, Weili Dai
{"title":"The role of adsorption and diffusion in improving the selectivity and reactivity of zeolite catalysts","authors":"Daoning Wu, Min Yang, Jun Yu, Michael Dyballa, Ping Yang, Mingfeng Li, Guangjin Hou, Michael Hunger, Weili Dai","doi":"10.1039/d5cs00220f","DOIUrl":null,"url":null,"abstract":"This review provides a comprehensive overview of the fundamental principles, characterization techniques, and recent advances in understanding molecular adsorption and diffusion behaviors within zeolite materials. By examining the distinctive microporous frameworks, tunable pore sizes, and adjustable acid site distributions of zeolites, we highlight how adsorption and diffusion processes critically govern catalytic activity and selectivity. We discuss state-of-the-art experimental approaches alongside multi-scale computational methods, which collectively shed light on the molecular-level transport dynamics, interaction mechanisms, and energy barriers within zeolite channels. Focusing on exemplary topologies, we detail their performance and mechanistic insights in key applications including hydrocarbon adsorption, catalytic cracking, methanol conversion, and molecular separation. We further explore how tuning the Si/Al ratio, incorporating metal ions, engineering hierarchical pore structures, and regulating acid site distributions can synergistically optimize adsorption and diffusion, thereby enhancing catalytic efficiency and selectivity. These advancements pave the way for precise molecular-level control over transport phenomena and reaction pathways, underpinning the development of sustainable zeolite-based catalysts for clean energy, chemical process, and environmental applications.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"30 1","pages":""},"PeriodicalIF":39.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cs00220f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This review provides a comprehensive overview of the fundamental principles, characterization techniques, and recent advances in understanding molecular adsorption and diffusion behaviors within zeolite materials. By examining the distinctive microporous frameworks, tunable pore sizes, and adjustable acid site distributions of zeolites, we highlight how adsorption and diffusion processes critically govern catalytic activity and selectivity. We discuss state-of-the-art experimental approaches alongside multi-scale computational methods, which collectively shed light on the molecular-level transport dynamics, interaction mechanisms, and energy barriers within zeolite channels. Focusing on exemplary topologies, we detail their performance and mechanistic insights in key applications including hydrocarbon adsorption, catalytic cracking, methanol conversion, and molecular separation. We further explore how tuning the Si/Al ratio, incorporating metal ions, engineering hierarchical pore structures, and regulating acid site distributions can synergistically optimize adsorption and diffusion, thereby enhancing catalytic efficiency and selectivity. These advancements pave the way for precise molecular-level control over transport phenomena and reaction pathways, underpinning the development of sustainable zeolite-based catalysts for clean energy, chemical process, and environmental applications.
期刊介绍:
Chemical Society Reviews is published by: Royal Society of Chemistry.
Focus: Review articles on topics of current interest in chemistry;
Predecessors: Quarterly Reviews, Chemical Society (1947–1971);
Current title: Since 1971;
Impact factor: 60.615 (2021);
Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences