Research on collision simulation and control strategies for test mass release under electrostatic control

IF 3.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Diwen Shi(Daven Shi), Ji Wang, Chao Xue, Hengxu Yang, Jie Chang, Bingwei Cai, Yiyan Xu, Wei Wang, Shengping Huang and Jinxiu Zhang
{"title":"Research on collision simulation and control strategies for test mass release under electrostatic control","authors":"Diwen Shi(Daven Shi), Ji Wang, Chao Xue, Hengxu Yang, Jie Chang, Bingwei Cai, Yiyan Xu, Wei Wang, Shengping Huang and Jinxiu Zhang","doi":"10.1088/1361-6382/ae0234","DOIUrl":null,"url":null,"abstract":"Space inertial sensors are crucial for space-based gravitational wave detection, requiring precise injection of test masses (TMs) into geodesic trajectories. However, conventional electrostatic suspension methods face challenges in capturing TMs with momentum exceeding . This study proposes a novel approach to mitigate TM release momentum by leveraging controlled collisions between the locking and release mechanism and the TM. A multi-body collision dynamics model, developed in MATLAB/Simulink, simulates the in-orbit injection process under space conditions, integrating low-speed collision contact detection and electrostatic interactions. The improved injection scheme employs momentum attenuation through plunger-TM collisions and utilizes electrostatic forces for orientation control, effectively expanding the allowable momentum range during release. Simulation results demonstrate that the strategy reduces TM momentum to capturable levels of 5 µm s−1 linear velocity and 150 µrad s−1 angular velocity within 300 s, even under non-ideal initial conditions. The collision-based method enhances injection reliability by addressing adhesion risks and momentum uncertainties, offering a robust solution for future gravitational wave detection missions.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"16 2 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ae0234","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Space inertial sensors are crucial for space-based gravitational wave detection, requiring precise injection of test masses (TMs) into geodesic trajectories. However, conventional electrostatic suspension methods face challenges in capturing TMs with momentum exceeding . This study proposes a novel approach to mitigate TM release momentum by leveraging controlled collisions between the locking and release mechanism and the TM. A multi-body collision dynamics model, developed in MATLAB/Simulink, simulates the in-orbit injection process under space conditions, integrating low-speed collision contact detection and electrostatic interactions. The improved injection scheme employs momentum attenuation through plunger-TM collisions and utilizes electrostatic forces for orientation control, effectively expanding the allowable momentum range during release. Simulation results demonstrate that the strategy reduces TM momentum to capturable levels of 5 µm s−1 linear velocity and 150 µrad s−1 angular velocity within 300 s, even under non-ideal initial conditions. The collision-based method enhances injection reliability by addressing adhesion risks and momentum uncertainties, offering a robust solution for future gravitational wave detection missions.
静电控制下试验质量释放的碰撞仿真与控制策略研究
空间惯性传感器对于天基引力波探测至关重要,需要将测试质量精确地注入测地线轨迹。然而,传统的静电悬浮方法在捕获动量超标的TMs方面面临挑战。本研究提出了一种新的方法,通过利用锁定和释放机制与TM之间的可控碰撞来减轻TM释放动量。基于MATLAB/Simulink开发的多体碰撞动力学模型,综合低速碰撞接触检测和静电相互作用,模拟了空间条件下的在轨喷射过程。改进的注入方案通过柱塞- tm碰撞来衰减动量,并利用静电力控制方向,有效地扩大了释放时的允许动量范围。仿真结果表明,即使在非理想初始条件下,该策略也能在300秒内将TM动量降低到5 μ m s−1线速度和150 μ rad s−1角速度的可捕获水平。基于碰撞的方法通过解决粘附风险和动量不确定性提高了注入可靠性,为未来的引力波探测任务提供了强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信