{"title":"Construction of optical spatiotemporal skyrmions","authors":"Houan Teng, Xin Liu, Nianjia Zhang, Haihao Fan, Guoliang Chen, Qian Cao, Jinzhan Zhong, Xinrui Lei, Qiwen Zhan","doi":"10.1038/s41377-025-02028-0","DOIUrl":null,"url":null,"abstract":"<p>The creation and manipulation of photonic skyrmions provide a novel degree of freedom for light-matter interactions, optical communication and nanometrology. Since the localized vortex within skyrmions arises from the twist and curl of the phase structure, the orbital angular momentum of light is essential for their construction. While numerous skyrmionic textures have been proposed, they are formed within the spatial domain and induced by the longitudinal orbital angular momentum. Here we theoretically propose and experimentally observe spatiotemporal skyrmions within a picosecond pulse wavepacket, generated through vectorial sculpturing of spatiotemporal wavepackets. The skyrmionic textures emerge within the spatiotemporal distribution of a vector field encompass all possible polarization states. Constructed upon the transverse orbital angular momentum, spatiotemporal skyrmions, in contrast to spatial skyrmions, exhibit no helical twisting perpendicular to the skyrmion plane, demonstrating potential stability against deformations or perturbations. These results expand the skyrmion family and offer new insights into optical quasiparticles, potentially leading to advanced applications in optical metrology, sensing, and data storage.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"84 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-02028-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The creation and manipulation of photonic skyrmions provide a novel degree of freedom for light-matter interactions, optical communication and nanometrology. Since the localized vortex within skyrmions arises from the twist and curl of the phase structure, the orbital angular momentum of light is essential for their construction. While numerous skyrmionic textures have been proposed, they are formed within the spatial domain and induced by the longitudinal orbital angular momentum. Here we theoretically propose and experimentally observe spatiotemporal skyrmions within a picosecond pulse wavepacket, generated through vectorial sculpturing of spatiotemporal wavepackets. The skyrmionic textures emerge within the spatiotemporal distribution of a vector field encompass all possible polarization states. Constructed upon the transverse orbital angular momentum, spatiotemporal skyrmions, in contrast to spatial skyrmions, exhibit no helical twisting perpendicular to the skyrmion plane, demonstrating potential stability against deformations or perturbations. These results expand the skyrmion family and offer new insights into optical quasiparticles, potentially leading to advanced applications in optical metrology, sensing, and data storage.