{"title":"Molecular afterglow imaging for biomedical applications","authors":"Cheng Xu, Yan Zhang, Gaolin Liang, Kanyi Pu","doi":"10.1038/s41563-025-02338-z","DOIUrl":null,"url":null,"abstract":"<p>Afterglow imaging is an emerging optical modality using agents that emit long-lasting luminescence after excitation ceases to eliminate tissue autofluorescence and improve signal-to-background ratios, achieving high imaging sensitivity and deep tissue penetration. Here we review recent advances in molecular afterglow imaging for biomedical applications, highlighting the materials and mechanisms involved in afterglow imaging modalities induced by light, ultrasound and ionizing radiation, termed photoafterglow, sonoafterglow and radioafterglow, respectively. We describe strategies to modulate the lifetime, intensity and wavelength of afterglow materials and principles for designing afterglow imaging probes that feature biomarker-activatable signal readouts and optimal biophysical properties for in vivo applications. We also highlight the applications of afterglow materials in disease diagnosis, imaging-guided therapy and in vitro diagnostics, and discuss the current challenges in the clinical translation of these technologies.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"55 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02338-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Afterglow imaging is an emerging optical modality using agents that emit long-lasting luminescence after excitation ceases to eliminate tissue autofluorescence and improve signal-to-background ratios, achieving high imaging sensitivity and deep tissue penetration. Here we review recent advances in molecular afterglow imaging for biomedical applications, highlighting the materials and mechanisms involved in afterglow imaging modalities induced by light, ultrasound and ionizing radiation, termed photoafterglow, sonoafterglow and radioafterglow, respectively. We describe strategies to modulate the lifetime, intensity and wavelength of afterglow materials and principles for designing afterglow imaging probes that feature biomarker-activatable signal readouts and optimal biophysical properties for in vivo applications. We also highlight the applications of afterglow materials in disease diagnosis, imaging-guided therapy and in vitro diagnostics, and discuss the current challenges in the clinical translation of these technologies.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.