{"title":"Nephroprotective Effects of Formononetin in Diabetic Kidney Disease: Mechanistic Insights and Therapeutic Potential.","authors":"Siyuan Song, Xiqiao Zhou, Liji Huang, Jiangyi Yu","doi":"10.1142/S0192415X25500843","DOIUrl":null,"url":null,"abstract":"<p><p>Formononetin exhibits potent anti-oxidative and anti-inflammatory properties, but its precise therapeutic targets and mechanisms in diabetic kidney disease (DKD) remain insufficiently defined. This study evaluated the nephroprotective potential of formononetin using both <i>in vitro</i> (HK-2 cells) and <i>in vivo</i> (db/db mice) DKD models. By integrating network pharmacology and RNA sequencing, the antifibrotic actions of formononetin were further elucidated. Mechanistic investigations revealed that the compound reduced renal fibrosis by suppressing TGF-[Formula: see text]1, FN, and [Formula: see text]-SMA expression, and also alleviated renal dysfunction markers, including UACR, Scr, BUN, 24hUTP, KIM-1, and NGAL. These effects were mediated through the modulation of two key pathways such that the inhibition of the PI3K/AKT/mTOR cascade reduced inflammatory and fibrotic signaling, while the activation of the p38/MAPK axis enhanced autophagic flux, and thus promoted tubular epithelial cell homeostasis. Collectively, these findings support formononetin as a promising candidate for DKD therapy due to its combined anti-inflammatory and pro-autophagic mechanisms.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"2277-2305"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0192415X25500843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Formononetin exhibits potent anti-oxidative and anti-inflammatory properties, but its precise therapeutic targets and mechanisms in diabetic kidney disease (DKD) remain insufficiently defined. This study evaluated the nephroprotective potential of formononetin using both in vitro (HK-2 cells) and in vivo (db/db mice) DKD models. By integrating network pharmacology and RNA sequencing, the antifibrotic actions of formononetin were further elucidated. Mechanistic investigations revealed that the compound reduced renal fibrosis by suppressing TGF-[Formula: see text]1, FN, and [Formula: see text]-SMA expression, and also alleviated renal dysfunction markers, including UACR, Scr, BUN, 24hUTP, KIM-1, and NGAL. These effects were mediated through the modulation of two key pathways such that the inhibition of the PI3K/AKT/mTOR cascade reduced inflammatory and fibrotic signaling, while the activation of the p38/MAPK axis enhanced autophagic flux, and thus promoted tubular epithelial cell homeostasis. Collectively, these findings support formononetin as a promising candidate for DKD therapy due to its combined anti-inflammatory and pro-autophagic mechanisms.