{"title":"Detecting Critical Change in Dynamics Through Outlier Detection with Time-Varying Parameters.","authors":"Meng Chen, Michael D Hunter, Sy-Miin Chow","doi":"10.1111/bmsp.70010","DOIUrl":null,"url":null,"abstract":"<p><p>Intensive longitudinal data are often found to be non-stationary, namely, showing changes in statistical properties, such as means and variance-covariance structures, over time. One way to accommodate non-stationarity is to specify key parameters that show over-time changes as time-varying parameters (TVPs). However, the nature and dynamics of TVPs may themselves be heterogeneous across time, contexts, developmental stages, individuals and as related to other biopsychosocial-cultural influences. We propose an outlier detection method designed to facilitate the detection of critical shifts in any differentiable linear and non-linear dynamic functions, including dynamic functions for TVPs. This approach can be readily applied to various data scenarios, including single-subject and multisubject, univariate and multivariate processes, as well as with and without latent variables. We demonstrate the utility and performance of this approach with three sets of simulation studies and an empirical illustration using facial electromyography data from a laboratory emotion induction study.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.70010","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Intensive longitudinal data are often found to be non-stationary, namely, showing changes in statistical properties, such as means and variance-covariance structures, over time. One way to accommodate non-stationarity is to specify key parameters that show over-time changes as time-varying parameters (TVPs). However, the nature and dynamics of TVPs may themselves be heterogeneous across time, contexts, developmental stages, individuals and as related to other biopsychosocial-cultural influences. We propose an outlier detection method designed to facilitate the detection of critical shifts in any differentiable linear and non-linear dynamic functions, including dynamic functions for TVPs. This approach can be readily applied to various data scenarios, including single-subject and multisubject, univariate and multivariate processes, as well as with and without latent variables. We demonstrate the utility and performance of this approach with three sets of simulation studies and an empirical illustration using facial electromyography data from a laboratory emotion induction study.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.