Toward burnout prevention with Bayesian mixed-effects regression analysis of longitudinal data from wearables: a preliminary study.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2025-08-28 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1640900
Radoslava Švihrová, Davide Marzorati, Michal Bechný, Max Grossenbacher, Yuriy Ilchenko, Jürg Grossenbacher, Athina Tzovara, Francesca Dalia Faraci
{"title":"Toward burnout prevention with Bayesian mixed-effects regression analysis of longitudinal data from wearables: a preliminary study.","authors":"Radoslava Švihrová, Davide Marzorati, Michal Bechný, Max Grossenbacher, Yuriy Ilchenko, Jürg Grossenbacher, Athina Tzovara, Francesca Dalia Faraci","doi":"10.3389/fdgth.2025.1640900","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable devices have gained significant popularity in recent years, as they provide valuable insights into behavioral patterns and enable unobtrusive continuous monitoring. This work explores how daily lifestyle choices and physiological factors contribute to coping capacities and aims at designing burnout prevention systems. Key variables examined include sleep stage proportions and nocturnal stress levels, as both play a crucial role in recovery and resilience. Longitudinal data from a 1-week study incorporating wearable-derived features and contextual information are analyzed using a mixed-effects model, accounting for both overall trends and individual differences. A Bayesian inference approach is exploited to quantify uncertainty in estimated effects, providing their probabilistic interpretation and ensuring robustness despite the low sample size. Findings indicate that alcohol consumption negatively affects rapid-eye-movement sleep, increases awake time, and elevates nocturnal stress. Excessive daily stress reduces deep sleep, while an increase in daily active hours promote it. These results align with the existing literature, demonstrating the potential of consumer-grade wearables to monitor clinically relevant relationships and guide interventions for stress reduction and burnout prevention.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1640900"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1640900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable devices have gained significant popularity in recent years, as they provide valuable insights into behavioral patterns and enable unobtrusive continuous monitoring. This work explores how daily lifestyle choices and physiological factors contribute to coping capacities and aims at designing burnout prevention systems. Key variables examined include sleep stage proportions and nocturnal stress levels, as both play a crucial role in recovery and resilience. Longitudinal data from a 1-week study incorporating wearable-derived features and contextual information are analyzed using a mixed-effects model, accounting for both overall trends and individual differences. A Bayesian inference approach is exploited to quantify uncertainty in estimated effects, providing their probabilistic interpretation and ensuring robustness despite the low sample size. Findings indicate that alcohol consumption negatively affects rapid-eye-movement sleep, increases awake time, and elevates nocturnal stress. Excessive daily stress reduces deep sleep, while an increase in daily active hours promote it. These results align with the existing literature, demonstrating the potential of consumer-grade wearables to monitor clinically relevant relationships and guide interventions for stress reduction and burnout prevention.

Abstract Image

基于贝叶斯混合效应的可穿戴设备纵向数据回归分析:倦怠预防的初步研究。
近年来,可穿戴设备越来越受欢迎,因为它们提供了对行为模式的有价值的见解,并实现了不显眼的连续监控。本研究探讨了日常生活方式的选择和生理因素对应对能力的影响,旨在设计倦怠预防系统。研究的关键变量包括睡眠阶段比例和夜间压力水平,因为两者在恢复和恢复力方面都起着至关重要的作用。在一项为期一周的研究中,结合了可穿戴设备的特征和上下文信息,使用混合效应模型分析了纵向数据,考虑了总体趋势和个体差异。贝叶斯推理方法被用来量化估计效应的不确定性,提供它们的概率解释,并确保低样本量的稳健性。研究结果表明,饮酒会对快速眼动睡眠产生负面影响,增加清醒时间,并增加夜间压力。过度的日常压力会减少深度睡眠,而增加日常活动时间则会促进深度睡眠。这些结果与现有文献一致,证明了消费级可穿戴设备在监测临床相关关系和指导干预措施以减轻压力和预防倦怠方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信