A Machine Learning Model Integrating Remote Sensing, Ground Station, and Geospatial Data to Predict Fine-Resolution Daily Air Temperature for Tuscany, Italy.
Giorgio Limoncella, Denise Feurer, Dominic Roye, Kees de Hoogh, Arturo de la Cruz, Antonio Gasparrini, Rochelle Schneider, Francesco Pirotti, Dolores Catelan, Massimo Stafoggia, Francesca de'Donato, Giulio Biscardi, Chiara Marzi, Michela Baccini, Francesco Sera
{"title":"A Machine Learning Model Integrating Remote Sensing, Ground Station, and Geospatial Data to Predict Fine-Resolution Daily Air Temperature for Tuscany, Italy.","authors":"Giorgio Limoncella, Denise Feurer, Dominic Roye, Kees de Hoogh, Arturo de la Cruz, Antonio Gasparrini, Rochelle Schneider, Francesco Pirotti, Dolores Catelan, Massimo Stafoggia, Francesca de'Donato, Giulio Biscardi, Chiara Marzi, Michela Baccini, Francesco Sera","doi":"10.3390/rs17173052","DOIUrl":null,"url":null,"abstract":"<p><p>Heat-related morbidity and mortality are increasing due to climate change, emphasizing the need to identify vulnerable areas and people exposed to extreme temperatures. To improve heat stress impact assessment, we developed a replicable machine learning model that integrates remote sensing, ground station, and geospatial data to estimate daily air temperature at a spatial resolution of 100 m <i>×</i> 100 m across the region of Tuscany, Italy. Using a two-stage approach, we first imputed missing land surface temperature data from MODIS using gradient-boosted trees and spatio-temporal predictors. Then, we modeled daily maximum and minimum air temperatures by incorporating monitoring station observations, satellite-derived data (MODIS, Landsat 8), topography, land cover, meteorological variables (ERA5-land), and vegetation indices (NDVI). The model achieved high predictive accuracy, with R<sup>2</sup> values of 0.95 for Tmax and 0.92 for Tmin, and root mean square errors (RMSE) of 1.95 °C and 1.96 °C, respectively. It effectively captured both temporal (R<sup>2</sup>: 0.95; 0.94) and spatial (R<sup>2</sup>: 0.92; 0.72) temperature variations, allowing for the creation of high-resolution maps. These results highlight the potential of integrating Earth Observation and machine learning to generate high-resolution temperature maps, offering valuable insights for urban planning, climate adaptation, and epidemiological studies on heat-related health effects.</p>","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"17 17","pages":"3052"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7618111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs17173052","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heat-related morbidity and mortality are increasing due to climate change, emphasizing the need to identify vulnerable areas and people exposed to extreme temperatures. To improve heat stress impact assessment, we developed a replicable machine learning model that integrates remote sensing, ground station, and geospatial data to estimate daily air temperature at a spatial resolution of 100 m × 100 m across the region of Tuscany, Italy. Using a two-stage approach, we first imputed missing land surface temperature data from MODIS using gradient-boosted trees and spatio-temporal predictors. Then, we modeled daily maximum and minimum air temperatures by incorporating monitoring station observations, satellite-derived data (MODIS, Landsat 8), topography, land cover, meteorological variables (ERA5-land), and vegetation indices (NDVI). The model achieved high predictive accuracy, with R2 values of 0.95 for Tmax and 0.92 for Tmin, and root mean square errors (RMSE) of 1.95 °C and 1.96 °C, respectively. It effectively captured both temporal (R2: 0.95; 0.94) and spatial (R2: 0.92; 0.72) temperature variations, allowing for the creation of high-resolution maps. These results highlight the potential of integrating Earth Observation and machine learning to generate high-resolution temperature maps, offering valuable insights for urban planning, climate adaptation, and epidemiological studies on heat-related health effects.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.