fcirt: An R Package for Forced Choice Models in Item Response Theory.

IF 1.2 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Naidan Tu, Sean Joo, Philseok Lee, Stephen Stark
{"title":"<i>fcirt</i>: An R Package for Forced Choice Models in Item Response Theory.","authors":"Naidan Tu, Sean Joo, Philseok Lee, Stephen Stark","doi":"10.1177/01466216251378771","DOIUrl":null,"url":null,"abstract":"<p><p>Multidimensional forced choice (MFC) formats have emerged as a promising alternative to traditional single statement Likert-type measures for assessing noncognitive traits while reducing response biases. As MFC formats become more widely used, there is a growing need for tools to support MFC analysis, which motivated the development of the <i>fcirt</i> package. The <i>fcirt</i> package estimates forced choice model parameters using Bayesian methods. It currently enables estimation of the Generalized Graded Unfolding Model (GGUM; Roberts et al., 2000)-based Multi-Unidimensional Pairwise Preference (MUPP) model using <i>rstan</i>, which implements the Hamiltonian Monte Carlo (HMC) sampling algorithm. <i>fcirt</i> also includes functions for computing item and test information functions to evaluate the quality of MFC assessments, as well as functions for Bayesian diagnostic plotting to assist with model evaluation and convergence assessment.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251378771"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251378771","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multidimensional forced choice (MFC) formats have emerged as a promising alternative to traditional single statement Likert-type measures for assessing noncognitive traits while reducing response biases. As MFC formats become more widely used, there is a growing need for tools to support MFC analysis, which motivated the development of the fcirt package. The fcirt package estimates forced choice model parameters using Bayesian methods. It currently enables estimation of the Generalized Graded Unfolding Model (GGUM; Roberts et al., 2000)-based Multi-Unidimensional Pairwise Preference (MUPP) model using rstan, which implements the Hamiltonian Monte Carlo (HMC) sampling algorithm. fcirt also includes functions for computing item and test information functions to evaluate the quality of MFC assessments, as well as functions for Bayesian diagnostic plotting to assist with model evaluation and convergence assessment.

第一章:项目反应理论中强迫选择模型的R包。
多维强迫选择(MFC)格式已经成为传统的单语句李克特测量方法的一个有希望的替代方案,用于评估非认知特征,同时减少反应偏差。随着MFC格式的广泛使用,越来越需要支持MFC分析的工具,这推动了第一个包的开发。第一个包使用贝叶斯方法估计强制选择模型参数。目前,它可以使用rstan估计基于广义梯度展开模型(GGUM; Roberts et al., 2000)的多维配对偏好(MUPP)模型,该模型实现了哈密顿蒙特卡罗(HMC)采样算法。fcirt还包括计算项目和测试信息函数的功能,以评估MFC评估的质量,以及贝叶斯诊断绘图的功能,以协助模型评估和收敛性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信