The TRACERS Fluxgate Magnetometer (MAG).

IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Space Science Reviews Pub Date : 2025-01-01 Epub Date: 2025-09-12 DOI:10.1007/s11214-025-01212-3
Robert J Strangeway, Hao Cao, Eric Orrill, Ryan P Caron, David Pierce, Ryan Seaton, Henry H Gonzalez, Enrique Gurrola, William Greer, David Leneman, Michael J Lawson, Vicente Capistrano, Dean Bushong, Jianxin Chen, Cynthia L Russell, Jiashu Wu, David M Miles, Craig A Kletzing
{"title":"The TRACERS Fluxgate Magnetometer (MAG).","authors":"Robert J Strangeway, Hao Cao, Eric Orrill, Ryan P Caron, David Pierce, Ryan Seaton, Henry H Gonzalez, Enrique Gurrola, William Greer, David Leneman, Michael J Lawson, Vicente Capistrano, Dean Bushong, Jianxin Chen, Cynthia L Russell, Jiashu Wu, David M Miles, Craig A Kletzing","doi":"10.1007/s11214-025-01212-3","DOIUrl":null,"url":null,"abstract":"<p><p>The NASA Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission is a two-spacecraft mission designed to explore the temporal and spatial signatures of magnetic reconnection as observed at the low altitude dayside cusp. The instrumentation on each TRACERS spacecraft includes a three-axis vector fluxgate magnetometer (MAG). The MAG sensor design heritage is from Magnetospheric Multiscale (MMS), while the electronics heritage is from the InSight mission to Mars. Testing as part of the MAG instrument delivery verified that the MAG dynamic range exceeded ±60,000 nT with a resolution of ∼9 pT to provide margin. The fluxgate magnetometers have been calibrated on the ground, but as is typical for fluxgates they will be re-calibrated using on-orbit data. The TRACERS spacecraft are spinning spacecraft in an orbit at 590 km altitude. Absolute gains, orientation, and spin-axis offsets will be determined through comparison with the International Geomagnetic Reference Field (IGRF) with an underlying orbit-period cadence. Additionally, spin-tones allow determination of relative angular orientation and gain and spin-plane offsets at spin-period temporal resolution. To meet the TRACERS mission science objectives MAG will measure magnetic field perturbations from large scale field-aligned currents, and shorter scale Alfvén waves. The electromagnetic energy flux associated with these magnetic field perturbations has major impacts on particle acceleration along the flux tube and ionospheric heating through Joule dissipation. This conversion from electromagnetic to particle energy is a primary driver for the escape of ionospheric plasma into the magnetosphere, making this an important secondary science objective for the TRACERS mission.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 6","pages":"84"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12431926/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-025-01212-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The NASA Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission is a two-spacecraft mission designed to explore the temporal and spatial signatures of magnetic reconnection as observed at the low altitude dayside cusp. The instrumentation on each TRACERS spacecraft includes a three-axis vector fluxgate magnetometer (MAG). The MAG sensor design heritage is from Magnetospheric Multiscale (MMS), while the electronics heritage is from the InSight mission to Mars. Testing as part of the MAG instrument delivery verified that the MAG dynamic range exceeded ±60,000 nT with a resolution of ∼9 pT to provide margin. The fluxgate magnetometers have been calibrated on the ground, but as is typical for fluxgates they will be re-calibrated using on-orbit data. The TRACERS spacecraft are spinning spacecraft in an orbit at 590 km altitude. Absolute gains, orientation, and spin-axis offsets will be determined through comparison with the International Geomagnetic Reference Field (IGRF) with an underlying orbit-period cadence. Additionally, spin-tones allow determination of relative angular orientation and gain and spin-plane offsets at spin-period temporal resolution. To meet the TRACERS mission science objectives MAG will measure magnetic field perturbations from large scale field-aligned currents, and shorter scale Alfvén waves. The electromagnetic energy flux associated with these magnetic field perturbations has major impacts on particle acceleration along the flux tube and ionospheric heating through Joule dissipation. This conversion from electromagnetic to particle energy is a primary driver for the escape of ionospheric plasma into the magnetosphere, making this an important secondary science objective for the TRACERS mission.

TRACERS磁通门磁强计(MAG)
NASA串联重联和尖端电动力学侦察卫星(TRACERS)任务是一个双航天器任务,旨在探索在低空日侧尖端观测到的磁重联的时间和空间特征。每个TRACERS航天器上的仪器包括一个三轴矢量磁通门磁强计(MAG)。MAG传感器设计继承自磁层多尺度(MMS),而电子设计继承自洞察号火星任务。作为MAG仪器交付的一部分,测试验证了MAG动态范围超过±60,000 nT,分辨率为~ 9 pT,以提供余量。磁通门磁力计已在地面上进行了校准,但与磁通门的典型情况一样,它们将使用在轨数据进行重新校准。TRACERS宇宙飞船在海拔590公里的轨道上旋转。绝对增益、方向和自旋轴偏移将通过与具有潜在轨道周期节奏的国际地磁基准场(IGRF)的比较来确定。此外,自旋音调允许在自旋周期时间分辨率下确定相对角取向和增益以及自旋平面偏移。为了满足TRACERS任务的科学目标,MAG将测量来自大尺度场向电流和较短尺度alfvsamn波的磁场扰动。与这些磁场扰动相关的电磁能量通量对粒子沿通量管的加速度和通过焦耳耗散的电离层加热有重要影响。这种从电磁能量到粒子能量的转换是电离层等离子体逃逸到磁层的主要驱动因素,使其成为TRACERS任务的重要次要科学目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Space Science Reviews
Space Science Reviews 地学天文-天文与天体物理
CiteScore
19.70
自引率
3.90%
发文量
60
审稿时长
4-8 weeks
期刊介绍: Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter. Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信