Isabelle Aicklen, Mithila Jugulam, Todd Gaines, William Kramer, Martin Laforest, Darren Robinson, Peter Sikkema, François Tardif
{"title":"Determination of the Mechanisms of MCPA Resistance in <i>Amaranthus powellii</i>.","authors":"Isabelle Aicklen, Mithila Jugulam, Todd Gaines, William Kramer, Martin Laforest, Darren Robinson, Peter Sikkema, François Tardif","doi":"10.1002/pld3.70105","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to 2-methyl-4-chloro-phenoxyacetic acid (MCPA) was recently confirmed in a population of green pigweed (<i>Amaranthus powellii</i>) from Dresden, Ontario, Canada, with a resistance factor of 4.4. Resistance to synthetic auxin herbicides in <i>Amaranthus</i> species has previously been linked to non-target site resistance mechanisms with low-level resistance factors (< 10). Based on this information, an investigation into the mechanism of resistance to MCPA was conducted in this population of green pigweed. No significant differences in absorption, translocation, and metabolism of <sup>14</sup>C-MCPA existed between the resistant and a susceptible population of green pigweed. An RNA-Sequencing experiment to identify differentially expressed genes also confirmed this result. Genes that were differentially expressed in the resistant population were linked to target site modifications. A single nucleotide polymorphism (SNP) conferring a leucine to phenylalanine substitution was identified in auxin response factor (ARF) 9. This mutation may be in the Phox and Bem1p (PB1) domain in ARF9, which facilitates the interaction between ARFs and Aux/IAA repressor proteins. The results demonstrate that the mechanism of resistance to MCPA is not a non-target site mechanism and may be linked to a target site modification. Specifically, a SNP in ARF9 could disrupt the interaction between ARF9 and other Aux/IAAs, which could prevent ubiquitination of Aux/IAAs and subsequent lethal action of MCPA.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 9","pages":"e70105"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70105","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Resistance to 2-methyl-4-chloro-phenoxyacetic acid (MCPA) was recently confirmed in a population of green pigweed (Amaranthus powellii) from Dresden, Ontario, Canada, with a resistance factor of 4.4. Resistance to synthetic auxin herbicides in Amaranthus species has previously been linked to non-target site resistance mechanisms with low-level resistance factors (< 10). Based on this information, an investigation into the mechanism of resistance to MCPA was conducted in this population of green pigweed. No significant differences in absorption, translocation, and metabolism of 14C-MCPA existed between the resistant and a susceptible population of green pigweed. An RNA-Sequencing experiment to identify differentially expressed genes also confirmed this result. Genes that were differentially expressed in the resistant population were linked to target site modifications. A single nucleotide polymorphism (SNP) conferring a leucine to phenylalanine substitution was identified in auxin response factor (ARF) 9. This mutation may be in the Phox and Bem1p (PB1) domain in ARF9, which facilitates the interaction between ARFs and Aux/IAA repressor proteins. The results demonstrate that the mechanism of resistance to MCPA is not a non-target site mechanism and may be linked to a target site modification. Specifically, a SNP in ARF9 could disrupt the interaction between ARF9 and other Aux/IAAs, which could prevent ubiquitination of Aux/IAAs and subsequent lethal action of MCPA.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.