Jiali Liu, Xiaowen Song, Xinni Song, Xinyue Fu, Shufang Niu, Hong Chang, Songli Shi, Meiqing Yang, Ruiqi Zhao, Peng Wang, Jun Qi, Wanfu Bai
{"title":"Bibliometrics-guided cyberpharmacology and transcriptomics for multidimensional analysis of the antihepatic fibrosis mechanism of kaempferol.","authors":"Jiali Liu, Xiaowen Song, Xinni Song, Xinyue Fu, Shufang Niu, Hong Chang, Songli Shi, Meiqing Yang, Ruiqi Zhao, Peng Wang, Jun Qi, Wanfu Bai","doi":"10.3389/fmolb.2025.1607103","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hepatic Fibrosis (HF), a pathological remodeling process triggered by persistent liver damage, is marked by the excessive buildup of extracellular matrix (ECM), leading to a gradual deterioration of liver function and an increased likelihood of advancing to cirrhosis and liver failure.</p><p><strong>Methods: </strong>This study adopts a systematic pharmacology methodology, initially employing bibliometric analysis to identify traditional Chinese medicine (TCM) formulations and individual herbs with potential anti-HF properties. Subsequently, a multi-dimensional network analysis is conducted to pinpoint core active components. Experimental investigations involve the construction of a carbon tetrachloride (CCl<sub>4</sub>)-induced rat model of liver fibrosis, complemented by transcriptomic technology to systematically elucidate the mechanisms of action of the active components in TCM.</p><p><strong>Results: </strong>In this study, kaempferol (KA), identified as the principal active compound with anti-fibrotic properties, was selected from traditional Chinese medicine (TCM) and TCM prescriptions through a combination of bibliometric analysis and network pharmacology. Pharmacodynamic evaluations, including pathological section analyses, demonstrated that KA effectively mitigated the fibrotic process and decreased collagen deposition. Further corroborated by ELISA experiments, kaempferol exhibited pronounced anti-fibrotic effects, inhibited inflammatory responses, restored liver function indices, and ameliorated the progression of liver fibrosis. Mechanistic investigations revealed that KA modulated fatty acid metabolism, retinol metabolism, and arachidonic acid metabolism by regulating the expression of key metabolic enzyme genes such as <i>SCD, SCD2, FADS2,</i> and <i>CYP4A8</i>, and significantly influenced the activity of the PPAR signaling pathway. Additionally, it impacted the dysregulation of lipid metabolism and inflammatory response pathways, significantly inhibited hepatic stellate cell (HSC) activation, and reduced ECM accumulation.</p><p><strong>Discussion: </strong>This finding elucidates the mechanism by which KA attenuates HF through multi-target regulation, and provides a theoretical basis for metabolic reprogramming-based therapeutic strategies with translational valu.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1607103"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1607103","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Hepatic Fibrosis (HF), a pathological remodeling process triggered by persistent liver damage, is marked by the excessive buildup of extracellular matrix (ECM), leading to a gradual deterioration of liver function and an increased likelihood of advancing to cirrhosis and liver failure.
Methods: This study adopts a systematic pharmacology methodology, initially employing bibliometric analysis to identify traditional Chinese medicine (TCM) formulations and individual herbs with potential anti-HF properties. Subsequently, a multi-dimensional network analysis is conducted to pinpoint core active components. Experimental investigations involve the construction of a carbon tetrachloride (CCl4)-induced rat model of liver fibrosis, complemented by transcriptomic technology to systematically elucidate the mechanisms of action of the active components in TCM.
Results: In this study, kaempferol (KA), identified as the principal active compound with anti-fibrotic properties, was selected from traditional Chinese medicine (TCM) and TCM prescriptions through a combination of bibliometric analysis and network pharmacology. Pharmacodynamic evaluations, including pathological section analyses, demonstrated that KA effectively mitigated the fibrotic process and decreased collagen deposition. Further corroborated by ELISA experiments, kaempferol exhibited pronounced anti-fibrotic effects, inhibited inflammatory responses, restored liver function indices, and ameliorated the progression of liver fibrosis. Mechanistic investigations revealed that KA modulated fatty acid metabolism, retinol metabolism, and arachidonic acid metabolism by regulating the expression of key metabolic enzyme genes such as SCD, SCD2, FADS2, and CYP4A8, and significantly influenced the activity of the PPAR signaling pathway. Additionally, it impacted the dysregulation of lipid metabolism and inflammatory response pathways, significantly inhibited hepatic stellate cell (HSC) activation, and reduced ECM accumulation.
Discussion: This finding elucidates the mechanism by which KA attenuates HF through multi-target regulation, and provides a theoretical basis for metabolic reprogramming-based therapeutic strategies with translational valu.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.