Unlocking artificial intelligence, machine learning and deep learning to combat therapeutic resistance in metastatic castration-resistant prostate cancer: a comprehensive review.

IF 1.3 Q4 ONCOLOGY
ecancermedicalscience Pub Date : 2025-07-29 eCollection Date: 2025-01-01 DOI:10.3332/ecancer.2025.1953
Zainab Haider Ejaz, Reyan Hussain Shaikh, Alizeh Sonia Fatimi, Saqib Raza Khan
{"title":"Unlocking artificial intelligence, machine learning and deep learning to combat therapeutic resistance in metastatic castration-resistant prostate cancer: a comprehensive review.","authors":"Zainab Haider Ejaz, Reyan Hussain Shaikh, Alizeh Sonia Fatimi, Saqib Raza Khan","doi":"10.3332/ecancer.2025.1953","DOIUrl":null,"url":null,"abstract":"<p><p>Metastatic castration-resistant prostate cancer (mCRPC) remains a formidable clinical challenge despite advancements in therapy. This narrative review explores the role of artificial intelligence (AI), machine learning and deep learning in addressing therapeutic resistance in mCRPC. AI-driven approaches leverage integrated datasets encompassing genomics, proteomics and clinical parameters to uncover molecular mechanisms, predict treatment responses and identify biomarkers of resistance. These methodologies promise personalised treatment strategies tailored to individual patient profiles. However, data heterogeneity and regulatory considerations are challenges that hinder the translation of AI insights into clinical practice. By synthesising current literature, this review examines the progress, potential and limitations of AI applications in combating therapeutic resistance in mCRPC, highlighting implications for future research and clinical implementation.</p>","PeriodicalId":11460,"journal":{"name":"ecancermedicalscience","volume":"19 ","pages":"1953"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ecancermedicalscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3332/ecancer.2025.1953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metastatic castration-resistant prostate cancer (mCRPC) remains a formidable clinical challenge despite advancements in therapy. This narrative review explores the role of artificial intelligence (AI), machine learning and deep learning in addressing therapeutic resistance in mCRPC. AI-driven approaches leverage integrated datasets encompassing genomics, proteomics and clinical parameters to uncover molecular mechanisms, predict treatment responses and identify biomarkers of resistance. These methodologies promise personalised treatment strategies tailored to individual patient profiles. However, data heterogeneity and regulatory considerations are challenges that hinder the translation of AI insights into clinical practice. By synthesising current literature, this review examines the progress, potential and limitations of AI applications in combating therapeutic resistance in mCRPC, highlighting implications for future research and clinical implementation.

Abstract Image

Abstract Image

Abstract Image

解锁人工智能、机器学习和深度学习以对抗转移性去势抵抗性前列腺癌的治疗耐药性:全面回顾。
转移性去势抵抗性前列腺癌(mCRPC)仍然是一个巨大的临床挑战,尽管治疗进展。本文探讨了人工智能(AI)、机器学习和深度学习在解决mCRPC治疗耐药中的作用。人工智能驱动的方法利用包括基因组学、蛋白质组学和临床参数在内的集成数据集,揭示分子机制,预测治疗反应并识别耐药性的生物标志物。这些方法保证了针对个别患者的个性化治疗策略。然而,数据异质性和监管方面的考虑是阻碍人工智能见解转化为临床实践的挑战。通过综合现有文献,本文综述了人工智能在对抗mCRPC治疗耐药方面的进展、潜力和局限性,强调了对未来研究和临床实施的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.60%
发文量
138
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信