Larion Martin Santiago, Kasoorelope Oguntuyo, Britney Chin-Young, Damien Laudier, Zhixin Yu, Pedro Henrique Alves da Silva, Fei Fang, Angelo Amabile, Woojin M Han
{"title":"<i>WNT7A</i> mRNA Lipid Nanoparticles Promote Muscle Hypertrophy and Reduce Fatty Infiltration.","authors":"Larion Martin Santiago, Kasoorelope Oguntuyo, Britney Chin-Young, Damien Laudier, Zhixin Yu, Pedro Henrique Alves da Silva, Fei Fang, Angelo Amabile, Woojin M Han","doi":"10.1007/s12195-025-00859-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Myosteatosis and muscle atrophy are key pathological features of skeletal muscle degeneration in chronic injuries, degenerative myopathies, and aging. While recombinant WNT7A has shown promise in stimulating muscle hypertrophy and reducing fatty infiltration, its clinical translation is limited by challenges in delivery, scalability, and cost. The objective of this study was to evaluate the feasibility of lipid nanoparticle (LNP)-mediated mRNA delivery of WNT7A (W7a-LNP) as an alternative strategy for mitigating muscle degeneration.</p><p><strong>Methods: </strong>W7a-LNP efficacy was assessed <i>in vitro</i> and <i>in vivo</i> using primary murine fibro-adipogenic progenitors (FAPs), C2C12 myoblasts, and mouse models of muscle injury. FAP adipogenesis and myofiber size were quantified following W7a-LNP treatment. <i>In vivo</i>, W7a-LNP was administered via intramuscular injection in uninjured and glycerol-injured muscles, and its effects on myofiber size and intramuscular adipose tissue (IMAT) formation were analyzed.</p><p><strong>Results: </strong>W7a-LNP inhibited adipogenesis and increased myofiber size <i>in vitro</i>. In uninjured muscle, multiple W7a-LNP injections significantly increased myofiber size without inducing fibrosis, confirming its safety and efficacy in promoting muscle hypertrophy. However, in the glycerol injury model, W7a-LNP treatment showed variable effects on IMAT reduction when delivered early post-injury, likely due to the absence of viable myofibers needed for mRNA uptake and protein production. Delayed delivery at 4 days post-injury significantly reduced fatty infiltration, supporting the importance of timing and target cell availability for therapeutic efficacy.</p><p><strong>Conclusions: </strong>These findings provide proof-of-concept that W7a-LNP enhances myofiber hypertrophy and modulates fatty infiltration, supporting mRNA LNP technology as a scalable and localized alternative to recombinant protein therapy for combating muscle degeneration. Further optimization of dose, delivery frequency, and biodistribution will be critical for clinical translation.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12431683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-025-00859-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Myosteatosis and muscle atrophy are key pathological features of skeletal muscle degeneration in chronic injuries, degenerative myopathies, and aging. While recombinant WNT7A has shown promise in stimulating muscle hypertrophy and reducing fatty infiltration, its clinical translation is limited by challenges in delivery, scalability, and cost. The objective of this study was to evaluate the feasibility of lipid nanoparticle (LNP)-mediated mRNA delivery of WNT7A (W7a-LNP) as an alternative strategy for mitigating muscle degeneration.
Methods: W7a-LNP efficacy was assessed in vitro and in vivo using primary murine fibro-adipogenic progenitors (FAPs), C2C12 myoblasts, and mouse models of muscle injury. FAP adipogenesis and myofiber size were quantified following W7a-LNP treatment. In vivo, W7a-LNP was administered via intramuscular injection in uninjured and glycerol-injured muscles, and its effects on myofiber size and intramuscular adipose tissue (IMAT) formation were analyzed.
Results: W7a-LNP inhibited adipogenesis and increased myofiber size in vitro. In uninjured muscle, multiple W7a-LNP injections significantly increased myofiber size without inducing fibrosis, confirming its safety and efficacy in promoting muscle hypertrophy. However, in the glycerol injury model, W7a-LNP treatment showed variable effects on IMAT reduction when delivered early post-injury, likely due to the absence of viable myofibers needed for mRNA uptake and protein production. Delayed delivery at 4 days post-injury significantly reduced fatty infiltration, supporting the importance of timing and target cell availability for therapeutic efficacy.
Conclusions: These findings provide proof-of-concept that W7a-LNP enhances myofiber hypertrophy and modulates fatty infiltration, supporting mRNA LNP technology as a scalable and localized alternative to recombinant protein therapy for combating muscle degeneration. Further optimization of dose, delivery frequency, and biodistribution will be critical for clinical translation.
期刊介绍:
The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas:
Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example.
Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions.
Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress.
Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.