A hybrid deep learning architectures and feature extraction techniques for alzheimer disease recognition.

IF 3.9 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-09-11 DOI:10.1007/s11571-025-10330-1
A Nivethitha, T Manigandan
{"title":"A hybrid deep learning architectures and feature extraction techniques for alzheimer disease recognition.","authors":"A Nivethitha, T Manigandan","doi":"10.1007/s11571-025-10330-1","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is one of the common forms of dementia and is tremendously increasing throughout the world. There are many biomarkers currently available to detect the AD progression. In AD, brain cell death occurs, leading to memory loss, impaired calculation ability, and difficulty in remembering recent events. Early detection of AD is crucial for managing the symptoms and providing effective medical intervention. AD symptoms usually develop gradually and become worse over time, and interfere with daily activities. Hence, this research proposes the Fuzzy scoring based ResNet-Convolutional Neural Network (FS-ResNet CNN) to discriminate AD patients having AD, Mild Cognitive Impairment (MCI), and cognitively normal (CN) using a hybrid deep learning architecture to leverage more complete spatial information from the ADNI data. Initially, the pre-processing is carried out using the z-score normalization. To reduce the time complexity and to select the prominent features, the Adaptive Grey Wolf Optimization Algorithm (AGWOA), harnessing the swarm intelligence, has been proposed. Finally, the Hybrid Deep Learning Architecture is applied for the classification of AD. Specifically, the proposed method introduces a novel method known as the Fuzzy Scoring to optimize the network performance. Furthermore, the proposed FS-ResNet CNN model is computationally efficient, less sensitive to noise, and efficiently saves memory. Experimental results demonstrate the effectiveness of the proposed method on the ADNI dataset, showing high classification accuracy of 97.89%, surpassing the other state-of-the-art methods.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"146"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10330-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is one of the common forms of dementia and is tremendously increasing throughout the world. There are many biomarkers currently available to detect the AD progression. In AD, brain cell death occurs, leading to memory loss, impaired calculation ability, and difficulty in remembering recent events. Early detection of AD is crucial for managing the symptoms and providing effective medical intervention. AD symptoms usually develop gradually and become worse over time, and interfere with daily activities. Hence, this research proposes the Fuzzy scoring based ResNet-Convolutional Neural Network (FS-ResNet CNN) to discriminate AD patients having AD, Mild Cognitive Impairment (MCI), and cognitively normal (CN) using a hybrid deep learning architecture to leverage more complete spatial information from the ADNI data. Initially, the pre-processing is carried out using the z-score normalization. To reduce the time complexity and to select the prominent features, the Adaptive Grey Wolf Optimization Algorithm (AGWOA), harnessing the swarm intelligence, has been proposed. Finally, the Hybrid Deep Learning Architecture is applied for the classification of AD. Specifically, the proposed method introduces a novel method known as the Fuzzy Scoring to optimize the network performance. Furthermore, the proposed FS-ResNet CNN model is computationally efficient, less sensitive to noise, and efficiently saves memory. Experimental results demonstrate the effectiveness of the proposed method on the ADNI dataset, showing high classification accuracy of 97.89%, surpassing the other state-of-the-art methods.

一种用于阿尔茨海默病识别的混合深度学习架构和特征提取技术。
阿尔茨海默病(AD)是痴呆症的一种常见形式,在世界范围内急剧增加。目前有许多生物标志物可用于检测AD的进展。在阿尔茨海默症中,脑细胞死亡,导致记忆丧失,计算能力受损,难以记住最近发生的事情。早期发现阿尔茨海默病对于控制症状和提供有效的医疗干预至关重要。阿尔茨海默病的症状通常逐渐发展,并随着时间的推移而恶化,并干扰日常活动。因此,本研究提出基于模糊评分的resnet -卷积神经网络(FS-ResNet CNN),利用混合深度学习架构从ADNI数据中获取更完整的空间信息,区分AD、轻度认知障碍(MCI)和认知正常(CN)的AD患者。最初,预处理使用z-score归一化进行。为了降低时间复杂度和选择突出特征,利用群体智能提出了自适应灰狼优化算法(AGWOA)。最后,将混合深度学习架构应用于AD分类。具体来说,该方法引入了一种称为模糊评分的新方法来优化网络性能。此外,本文提出的FS-ResNet CNN模型具有计算效率高、对噪声不敏感、有效节省内存等优点。实验结果证明了该方法在ADNI数据集上的有效性,分类准确率高达97.89%,超过了现有的分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信