{"title":"Neuropeptide FF Receptor 2 Overexpression Aggravates Lipid Accumulation and Metabolic Dysfunction in Mice with Diet-Induced Metabolic Stress.","authors":"Hsiang-Ting Hsu, Chun-Chun Hsu, Yun-Jou Liao, Hui-Yun Li, Yao-Chang Chiang, Ya-Tin Lin","doi":"10.1016/j.bj.2025.100913","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Obesity is a major contributor to metabolic dysfunction and is driven by complex genetic, behavioral, and physiological factors. Neuropeptide FF receptor 2 (NPFFR2) has been implicated in regulating feeding behavior, as well as energy and glucose homeostasis. However, its precise role in obesity and metabolic disorders remains unclear. This study aimed to investigate the systemic role of NPFFR2 in obesity-induced metabolic dysfunction.</p><p><strong>Material and methods: </strong>The role of NPFFR2 was examined using wild-type and Npffr2-overexpressing transgenic mice subjected to 15 weeks of high-fat high-sucrose diet to induce obesity. Systemic, tissue-specific, and serum metabolic profiles were analyzed, with a particular focus on lipid abnormalities in the liver and adipose tissues.</p><p><strong>Results: </strong>Npffr2 overexpression exacerbated obesity-induced metabolic dysfunction, including accelerated body weight gain, impaired glucose homeostasis, altered fat composition, adipose tissue inflammation, and dysregulated lipid metabolism. In addition, hypertrophy of both hepatocytes and adipocytes was aggravated in Npffr2-overexpressing mice, collectively contributing to excessive energy storage and reduced metabolic efficiency.</p><p><strong>Conclusions: </strong>These findings suggest that NPFFR2 may contribute to the regulation of energy balance and lipid metabolism, potentially via central regulatory pathways. These findings highlight the need for mechanistic studies to clarify its region-specific roles and therapeutic potential in metabolic disorders.</p>","PeriodicalId":8934,"journal":{"name":"Biomedical Journal","volume":" ","pages":"100913"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bj.2025.100913","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Obesity is a major contributor to metabolic dysfunction and is driven by complex genetic, behavioral, and physiological factors. Neuropeptide FF receptor 2 (NPFFR2) has been implicated in regulating feeding behavior, as well as energy and glucose homeostasis. However, its precise role in obesity and metabolic disorders remains unclear. This study aimed to investigate the systemic role of NPFFR2 in obesity-induced metabolic dysfunction.
Material and methods: The role of NPFFR2 was examined using wild-type and Npffr2-overexpressing transgenic mice subjected to 15 weeks of high-fat high-sucrose diet to induce obesity. Systemic, tissue-specific, and serum metabolic profiles were analyzed, with a particular focus on lipid abnormalities in the liver and adipose tissues.
Results: Npffr2 overexpression exacerbated obesity-induced metabolic dysfunction, including accelerated body weight gain, impaired glucose homeostasis, altered fat composition, adipose tissue inflammation, and dysregulated lipid metabolism. In addition, hypertrophy of both hepatocytes and adipocytes was aggravated in Npffr2-overexpressing mice, collectively contributing to excessive energy storage and reduced metabolic efficiency.
Conclusions: These findings suggest that NPFFR2 may contribute to the regulation of energy balance and lipid metabolism, potentially via central regulatory pathways. These findings highlight the need for mechanistic studies to clarify its region-specific roles and therapeutic potential in metabolic disorders.
期刊介绍:
Biomedical Journal publishes 6 peer-reviewed issues per year in all fields of clinical and biomedical sciences for an internationally diverse authorship. Unlike most open access journals, which are free to readers but not authors, Biomedical Journal does not charge for subscription, submission, processing or publication of manuscripts, nor for color reproduction of photographs.
Clinical studies, accounts of clinical trials, biomarker studies, and characterization of human pathogens are within the scope of the journal, as well as basic studies in model species such as Escherichia coli, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealing the function of molecules, cells, and tissues relevant for human health. However, articles on other species can be published if they contribute to our understanding of basic mechanisms of biology.
A highly-cited international editorial board assures timely publication of manuscripts. Reviews on recent progress in biomedical sciences are commissioned by the editors.