Construction of a logistic model and GBM model for infection after spinal canal resection of intraspinal tumors.

IF 1.6 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
American journal of translational research Pub Date : 2025-08-15 eCollection Date: 2025-01-01 DOI:10.62347/DGJX1401
Yongqiang Ye, Jianwei Lv, Huan Liu, Fei Xie, Hongbin Liu
{"title":"Construction of a logistic model and GBM model for infection after spinal canal resection of intraspinal tumors.","authors":"Yongqiang Ye, Jianwei Lv, Huan Liu, Fei Xie, Hongbin Liu","doi":"10.62347/DGJX1401","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To identify risk factors for postoperative infection following intraspinal tumor (IT) resection, and to construct predictive models using a Logistic regression model and gradient boosting machine (GBM) algorithms.</p><p><strong>Methods: </strong>A retrospective study was conducted on 136 patients who developed postoperative infections after IT resection at Ziyang Central Hospital from November 2013 to October 2024. Logistic regression and GBM models were developed using R 4.3.2.</p><p><strong>Results: </strong>Logistic regression analysis identified age >55 years, type II diabetes, operation time >3.3 h, interleukin-6 (IL-6)>5.5 ng/L, and procalcitonin (PCT)>0.3 ug/L as independent risk factors for infection after IT resection (<i>P</i><0.05). The logistic regression equation was: Logit (<i>P</i>) = -12.238 + 2.081 × Age + 1.118 × Type II diabetes + 1.381 × operation time + 2.131 × IL-6 + 1.843 × PCT. In the GBM model, the relative importance of variables was: age (23.13011), IL-6 (22.98775), type II diabetes (18.57776), PCT (17.86779), and operation time (17.73660). The areas under the ROC curves (AUC) was 0.886 for the logistic model and 0.907 for the GBM model. Calibration curves demonstrated good agreement between predicted and observed infection rates in both models.</p><p><strong>Conclusions: </strong>The identified risk factors and the predictive models offer valuable tools for early identification and prevention of postoperative infection following IT resection.</p>","PeriodicalId":7731,"journal":{"name":"American journal of translational research","volume":"17 8","pages":"6425-6433"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12432750/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of translational research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/DGJX1401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To identify risk factors for postoperative infection following intraspinal tumor (IT) resection, and to construct predictive models using a Logistic regression model and gradient boosting machine (GBM) algorithms.

Methods: A retrospective study was conducted on 136 patients who developed postoperative infections after IT resection at Ziyang Central Hospital from November 2013 to October 2024. Logistic regression and GBM models were developed using R 4.3.2.

Results: Logistic regression analysis identified age >55 years, type II diabetes, operation time >3.3 h, interleukin-6 (IL-6)>5.5 ng/L, and procalcitonin (PCT)>0.3 ug/L as independent risk factors for infection after IT resection (P<0.05). The logistic regression equation was: Logit (P) = -12.238 + 2.081 × Age + 1.118 × Type II diabetes + 1.381 × operation time + 2.131 × IL-6 + 1.843 × PCT. In the GBM model, the relative importance of variables was: age (23.13011), IL-6 (22.98775), type II diabetes (18.57776), PCT (17.86779), and operation time (17.73660). The areas under the ROC curves (AUC) was 0.886 for the logistic model and 0.907 for the GBM model. Calibration curves demonstrated good agreement between predicted and observed infection rates in both models.

Conclusions: The identified risk factors and the predictive models offer valuable tools for early identification and prevention of postoperative infection following IT resection.

椎管内肿瘤切除后感染的logistic模型和GBM模型的建立。
目的:探讨椎管内肿瘤(IT)切除术后感染的危险因素,并采用Logistic回归模型和梯度增强机(GBM)算法建立预测模型。方法:回顾性分析2013年11月至2024年10月资阳市中心医院IT切除术后发生感染的136例患者。采用r4.3.2建立Logistic回归和GBM模型。结果:Logistic回归分析确定年龄> ~ 55岁、II型糖尿病、手术时间>3.3 h、白细胞介素-6 (IL-6)>5.5 ng/L、降钙素原(PCT)>0.3 ug/L为IT切除术后感染的独立危险因素(PP) = -12.238 + 2.081 ×年龄+ 1.118 × II型糖尿病+ 1.381 ×手术时间+ 2.131 × IL-6 + 1.843 × PCT,在GBM模型中,各变量的相对重要性为:年龄(23.13011)、IL-6(22.98775)、II型糖尿病(18.57776)、PCT(17.86779)、手术时间(17.73660)。logistic模型的ROC曲线下面积(AUC)为0.886,GBM模型为0.907。校正曲线表明,两种模型的预测感染率和观察到的感染率吻合良好。结论:确定的危险因素和预测模型为早期识别和预防IT切除术后的术后感染提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American journal of translational research
American journal of translational research ONCOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
自引率
0.00%
发文量
552
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信