Alginate-assisted self-optimizing heterojunction photocatalyst for sustainable wastewater remediation.

IF 12.5 1区 化学 Q1 CHEMISTRY, APPLIED
Carbohydrate Polymers Pub Date : 2025-11-15 Epub Date: 2025-08-06 DOI:10.1016/j.carbpol.2025.124186
Mohammed Rehan Katiyan, M D Furqaan Valiyathur, A Ahmed Raza, Z Ansar Ali, Anver Basha Kottur, S Zaheer Ahmed, Mohammed Safiullah Sakvai
{"title":"Alginate-assisted self-optimizing heterojunction photocatalyst for sustainable wastewater remediation.","authors":"Mohammed Rehan Katiyan, M D Furqaan Valiyathur, A Ahmed Raza, Z Ansar Ali, Anver Basha Kottur, S Zaheer Ahmed, Mohammed Safiullah Sakvai","doi":"10.1016/j.carbpol.2025.124186","DOIUrl":null,"url":null,"abstract":"<p><p>The persistent challenge of organic dye pollution necessitates the development of innovative and sustainable photocatalytic solutions. This study presents a self-optimizing hydrogel bead photocatalyst, comprising of graphene oxide-copper oxide (GO-CuO) nanocomposite encapsulated within a calcium alginate (CaAlg) matrix leading to the formation of CaAlg/GO-CuO, for enhanced degradation of methylene blue (MB) under UV-Vis light irradiation. Notably, the system enables in-situ reduction of Graphene oxide (GO) to reduced graphene oxide (rGO), significantly enhancing photocatalytic efficiency while allowing for facile catalyst recovery. The composite was characterized using Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray Diffraction (XRD), Raman spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-ray Analysis (SEM-EDAX), and UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) techniques. Photocatalytic tests demonstrated a remarkable 99 % degradation of MB within 120 min using CaAlg/GO-CuO, compared to 74 % with GO-CuO. Kinetic analysis revealed a 2.5-fold increase in the degradation rate constant, attributed to improved charge separation and enhanced mass transfer facilitated by the alginate matrix. Mechanistic investigation uncovered a dual-phase photocatalytic process: an initial type-II heterojunction-driven mechanism (0-60 min), followed by a Schottky junction-dominated pathway (60-120 min), triggered by in-situ photoreduction of GO to rGO. This transition improved electrical conductivity, suppressed charge recombination, and optimized electron transport pathways.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"368 Pt 2","pages":"124186"},"PeriodicalIF":12.5000,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2025.124186","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The persistent challenge of organic dye pollution necessitates the development of innovative and sustainable photocatalytic solutions. This study presents a self-optimizing hydrogel bead photocatalyst, comprising of graphene oxide-copper oxide (GO-CuO) nanocomposite encapsulated within a calcium alginate (CaAlg) matrix leading to the formation of CaAlg/GO-CuO, for enhanced degradation of methylene blue (MB) under UV-Vis light irradiation. Notably, the system enables in-situ reduction of Graphene oxide (GO) to reduced graphene oxide (rGO), significantly enhancing photocatalytic efficiency while allowing for facile catalyst recovery. The composite was characterized using Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray Diffraction (XRD), Raman spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-ray Analysis (SEM-EDAX), and UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) techniques. Photocatalytic tests demonstrated a remarkable 99 % degradation of MB within 120 min using CaAlg/GO-CuO, compared to 74 % with GO-CuO. Kinetic analysis revealed a 2.5-fold increase in the degradation rate constant, attributed to improved charge separation and enhanced mass transfer facilitated by the alginate matrix. Mechanistic investigation uncovered a dual-phase photocatalytic process: an initial type-II heterojunction-driven mechanism (0-60 min), followed by a Schottky junction-dominated pathway (60-120 min), triggered by in-situ photoreduction of GO to rGO. This transition improved electrical conductivity, suppressed charge recombination, and optimized electron transport pathways.

海藻酸盐辅助自优化异质结光催化剂的可持续废水修复。
有机染料污染的持续挑战需要创新和可持续的光催化解决方案的发展。本研究提出了一种自优化的水凝胶球光催化剂,由氧化石墨烯-氧化铜(GO-CuO)纳米复合材料包裹在海藻酸钙(CaAlg)基质中,形成CaAlg/GO-CuO,用于增强紫外-可见光照射下亚甲基蓝(MB)的降解。值得注意的是,该系统能够将氧化石墨烯(GO)原位还原为还原性氧化石墨烯(rGO),显著提高光催化效率,同时使催化剂易于回收。采用傅里叶变换红外光谱(FT-IR)、x射线衍射(XRD)、拉曼光谱、扫描电子显微镜-能量色散x射线分析(SEM-EDAX)和UV-Vis漫反射光谱(UV-Vis DRS)技术对复合材料进行了表征。光催化试验表明,使用CaAlg/GO-CuO在120分钟内对MB的降解率达到99%,而使用GO-CuO的降解率为74%。动力学分析表明,降解速率常数增加了2.5倍,这是由于藻酸盐基质改善了电荷分离和增强了传质。机理研究揭示了一个双相光催化过程:一个初始的ii型异质结驱动机制(0-60分钟),随后是一个以Schottky结为主的途径(60-120分钟),由GO原位光还原成rGO触发。这种转变改善了电导率,抑制了电荷重组,并优化了电子传递途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信