Uniform lithium deposition and enhanced stability in lithium metal batteries enabled by a flexible, ultrathin, and lithophilic SnS2@nanocellulose interlayer.

IF 12.5 1区 化学 Q1 CHEMISTRY, APPLIED
Carbohydrate Polymers Pub Date : 2025-11-15 Epub Date: 2025-08-06 DOI:10.1016/j.carbpol.2025.124181
Yao Feng, Sufeng Zhang, Ying Zhang, Hao Ding, Jie Deng, Mehdi Salami-Kalajahi, Ningxin Chen, Zhaohui Wang
{"title":"Uniform lithium deposition and enhanced stability in lithium metal batteries enabled by a flexible, ultrathin, and lithophilic SnS<sub>2</sub>@nanocellulose interlayer.","authors":"Yao Feng, Sufeng Zhang, Ying Zhang, Hao Ding, Jie Deng, Mehdi Salami-Kalajahi, Ningxin Chen, Zhaohui Wang","doi":"10.1016/j.carbpol.2025.124181","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium metal is recognized as a leading candidate for anodes in next-generation high-energy-density batteries. However, challenges such as Li dendrite growth and instability of the solid electrolyte interface (SEI) persist. Conventional artificial interface construction via coating often diminished effectiveness due to binders reducing activity. Herein, this study utilized nanofibrillar cellulose as a one-dimensional template to construct a nanocellulose-based flexible, ultrathin (≈1 μm), lithophilic SnS<sub>2</sub> nanopaper as an interlayer for separators. This innovative interlayer possesses self-supporting properties and mechanical flexibility while eliminating the need for activity-reducing binders. The uniform mesoporous structure of nanocellulose substrate ensures consistent lithium-ion flux, enhancing electrochemical stability. Within this framework, SnS<sub>2</sub> spontaneously forms a continuous SEI layer on the lithium anode surface, primarily consisting of Li<sub>2</sub>S and Li<sub>7</sub>Sn<sub>2</sub>. This SEI layer, distinguished by its high ionic conductivity and excellent lithophilicity, significantly reduces nucleation overpotential and facilitates homogeneous lithium plating and stripping. Therefore, symmetric cells equipped with the SnS<sub>2</sub> nanopaper interlayer demonstrate exceptional durability, sustaining operation for over 1400 h at 1 mA cm<sup>-2</sup> with a capacity of 1 mAh cm<sup>-2</sup>. Additionally, Li||LiFePO<sub>4</sub> cells exhibit remarkable cycling stability and rate performance. This work demonstrates the efficacy of the multifunctional interlayer in SEI modulation and dendritic growth inhibition.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"368 Pt 2","pages":"124181"},"PeriodicalIF":12.5000,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2025.124181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal is recognized as a leading candidate for anodes in next-generation high-energy-density batteries. However, challenges such as Li dendrite growth and instability of the solid electrolyte interface (SEI) persist. Conventional artificial interface construction via coating often diminished effectiveness due to binders reducing activity. Herein, this study utilized nanofibrillar cellulose as a one-dimensional template to construct a nanocellulose-based flexible, ultrathin (≈1 μm), lithophilic SnS2 nanopaper as an interlayer for separators. This innovative interlayer possesses self-supporting properties and mechanical flexibility while eliminating the need for activity-reducing binders. The uniform mesoporous structure of nanocellulose substrate ensures consistent lithium-ion flux, enhancing electrochemical stability. Within this framework, SnS2 spontaneously forms a continuous SEI layer on the lithium anode surface, primarily consisting of Li2S and Li7Sn2. This SEI layer, distinguished by its high ionic conductivity and excellent lithophilicity, significantly reduces nucleation overpotential and facilitates homogeneous lithium plating and stripping. Therefore, symmetric cells equipped with the SnS2 nanopaper interlayer demonstrate exceptional durability, sustaining operation for over 1400 h at 1 mA cm-2 with a capacity of 1 mAh cm-2. Additionally, Li||LiFePO4 cells exhibit remarkable cycling stability and rate performance. This work demonstrates the efficacy of the multifunctional interlayer in SEI modulation and dendritic growth inhibition.

通过柔性、超薄和亲石性SnS2@nanocellulose中间层实现锂金属电池的均匀锂沉积和增强稳定性。
锂金属被认为是下一代高能量密度电池阳极的主要候选材料。然而,锂枝晶生长和固体电解质界面(SEI)的不稳定性等挑战仍然存在。由于粘合剂活性降低,传统的通过涂层构建人工界面的效果往往会降低。本研究利用纳米纤维纤维素作为一维模板,构建了一种基于纳米纤维素的柔性、超薄(≈1 μm)、亲岩性的SnS2纳米纸作为隔板的中间层。这种创新的中间层具有自支撑性能和机械灵活性,同时不需要降低活性的粘合剂。纳米纤维素衬底均匀的介孔结构保证了锂离子通量的一致性,增强了电化学稳定性。在此框架下,SnS2自发地在锂阳极表面形成连续的SEI层,主要由Li2S和Li7Sn2组成。该SEI层具有高离子电导率和优异的亲石性,可显著降低成核过电位,有利于均匀镀锂和剥离锂。因此,配备SnS2纳米纸夹层的对称电池表现出卓越的耐用性,在1ma cm-2下保持运行超过1400小时,容量为1mah cm-2。此外,Li||LiFePO4电池表现出显著的循环稳定性和倍率性能。这项工作证明了多功能中间层在SEI调节和树突生长抑制中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信