Revealing the Effect of Pendant Identity on the Electrochemistry of Non-Conjugated Redox Active Polymers.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-15 DOI:10.1002/cssc.202501121
Evan Fox, Chen Wang, Mohd Avais, Krista Schoonover, Elizabeth Jergens, David Torres, Khirabdhi Mohanty, Jodie L Lutkenhaus, Emily B Pentzer
{"title":"Revealing the Effect of Pendant Identity on the Electrochemistry of Non-Conjugated Redox Active Polymers.","authors":"Evan Fox, Chen Wang, Mohd Avais, Krista Schoonover, Elizabeth Jergens, David Torres, Khirabdhi Mohanty, Jodie L Lutkenhaus, Emily B Pentzer","doi":"10.1002/cssc.202501121","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding charge transfer in redox-active non-conjugated polymers is key to unlocking their potential as alternative materials for energy storage. Many factors contribute to charge transfer, such as flexibility of the backbone, redox moiety type, and distance between neighboring redox sites. In a previous work, a series of spatially defined 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)-containing polymers was reported, with varied spacer lengths between the redox sites. Herein, the synthesis and characterization of spatially defined polymers is reported with the same spacing of three different redox pendants (phenothiazine, phthalimide, and dopamine) and the corresponding electrochemical properties. By doing so, the effect of solution-polymer interactions (in both the charged and neutral states) is revealed. The apparent diffusion coefficient (D<sub>app</sub>), the self-exchange rate constant (k<sub>ex</sub>), and the polymer-solvent interactions (χ and A<sub>2</sub>) of the phenothiazine, phthalimide, and TEMPO polymers are compared. The dopamine-based polymer exhibits limited solubility, preventing further characterization. D<sub>app</sub> and k<sub>ex</sub> correlate with χ, suggesting that solvent favorability enhances charge transfer in the solution state. These findings highlight the important role that polymer-solvent interactions play in the transfer of electrons, suggesting that a swollen polymer chain conformation promotes solution-state electron transfer and that solvent favorability promotes charge transfer.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501121"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501121","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding charge transfer in redox-active non-conjugated polymers is key to unlocking their potential as alternative materials for energy storage. Many factors contribute to charge transfer, such as flexibility of the backbone, redox moiety type, and distance between neighboring redox sites. In a previous work, a series of spatially defined 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)-containing polymers was reported, with varied spacer lengths between the redox sites. Herein, the synthesis and characterization of spatially defined polymers is reported with the same spacing of three different redox pendants (phenothiazine, phthalimide, and dopamine) and the corresponding electrochemical properties. By doing so, the effect of solution-polymer interactions (in both the charged and neutral states) is revealed. The apparent diffusion coefficient (Dapp), the self-exchange rate constant (kex), and the polymer-solvent interactions (χ and A2) of the phenothiazine, phthalimide, and TEMPO polymers are compared. The dopamine-based polymer exhibits limited solubility, preventing further characterization. Dapp and kex correlate with χ, suggesting that solvent favorability enhances charge transfer in the solution state. These findings highlight the important role that polymer-solvent interactions play in the transfer of electrons, suggesting that a swollen polymer chain conformation promotes solution-state electron transfer and that solvent favorability promotes charge transfer.

揭示垂坠同一性对非共轭氧化还原活性聚合物电化学的影响。
了解氧化还原活性非共轭聚合物中的电荷转移是释放其作为储能替代材料潜力的关键。许多因素有助于电荷转移,如主链的柔韧性、氧化还原片段类型和邻近氧化还原位点之间的距离。在之前的工作中,报道了一系列空间上定义的2,2,6,6-四甲基哌啶-1-氧(TEMPO)聚合物,它们在氧化还原位点之间具有不同的间隔长度。本文报道了三种不同的氧化还原悬垂物(吩噻嗪、邻苯二甲酸亚胺和多巴胺)具有相同间距的空间定义聚合物的合成和表征及其相应的电化学性质。通过这样做,揭示了溶液-聚合物相互作用(带电态和中性态)的影响。比较了吩噻嗪、酞酰亚胺和TEMPO聚合物的表观扩散系数(Dapp)、自交换速率常数(kex)和聚合物-溶剂相互作用(χ和A2)。多巴胺基聚合物表现出有限的溶解度,阻碍了进一步的表征。Dapp和kex与χ相关,表明溶剂偏好增强了溶液状态下的电荷转移。这些发现强调了聚合物-溶剂相互作用在电子转移中的重要作用,表明膨胀的聚合物链构象促进了溶液态电子转移,溶剂的亲和性促进了电荷转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信