Ag Cluster-Modified K0.5Na0.5NbO3 Piezocatalyst for Enhanced Electrochemical Dinitrogen Reduction Reaction

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Benedict Witulski, Naina Goyal, David Patrun, Fabio Pires, Ziyaad Aytuna, Hamed Alaei, Olav Schiemann, Sanjay Mathur
{"title":"Ag Cluster-Modified K0.5Na0.5NbO3 Piezocatalyst for Enhanced Electrochemical Dinitrogen Reduction Reaction","authors":"Benedict Witulski,&nbsp;Naina Goyal,&nbsp;David Patrun,&nbsp;Fabio Pires,&nbsp;Ziyaad Aytuna,&nbsp;Hamed Alaei,&nbsp;Olav Schiemann,&nbsp;Sanjay Mathur","doi":"10.1002/adem.202500764","DOIUrl":null,"url":null,"abstract":"<p>Efforts in finding alternatives to Haber–Bosch process for chemical synthesis of ammonia still struggle with efficient N<sub>2</sub> activation. Piezoelectric materials are promising cocatalysts to enhance the chemical kinetics of dinitrogen (N<sub>2</sub>) reduction through, built-in electric fields, upon mechanical activation, which can modulate the surface electrochemical potential. This work reports on the influence of piezoelectric potassium sodium niobate (K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub>, KNN) as a lead-free cocatalyst for the electrochemical nitrogen reduction reaction to ammonia (NH<sub>3</sub>) under mild conditions, on a silver (Ag) catalyst. For piezoactivation, modified H-cell is engineered with the working electrode (Ag/KNN), enabling external mechanical actuating during electrochemical process. The results demonstrate that transient dipoles generated on the KNN surface through localized electric field improve threefold NH<sub>3</sub> production (3.6 μg h<sup>−1</sup> cm<sup>−2</sup>) and a Faradaic efficiency up to 75%. Piezoinfluence is investigated through actuation-induced, linear sweep voltammetry, electrochemical impedance spectroscopy, chronoamperometry, and open-circuit potential measurements.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 17","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202500764","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.202500764","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts in finding alternatives to Haber–Bosch process for chemical synthesis of ammonia still struggle with efficient N2 activation. Piezoelectric materials are promising cocatalysts to enhance the chemical kinetics of dinitrogen (N2) reduction through, built-in electric fields, upon mechanical activation, which can modulate the surface electrochemical potential. This work reports on the influence of piezoelectric potassium sodium niobate (K0.5Na0.5NbO3, KNN) as a lead-free cocatalyst for the electrochemical nitrogen reduction reaction to ammonia (NH3) under mild conditions, on a silver (Ag) catalyst. For piezoactivation, modified H-cell is engineered with the working electrode (Ag/KNN), enabling external mechanical actuating during electrochemical process. The results demonstrate that transient dipoles generated on the KNN surface through localized electric field improve threefold NH3 production (3.6 μg h−1 cm−2) and a Faradaic efficiency up to 75%. Piezoinfluence is investigated through actuation-induced, linear sweep voltammetry, electrochemical impedance spectroscopy, chronoamperometry, and open-circuit potential measurements.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Ag簇修饰K0.5Na0.5NbO3压电催化剂增强电化学二氮还原反应
在寻找替代Haber-Bosch工艺的化学合成氨的努力仍然与有效的N2活化作斗争。压电材料是一种很有前途的助催化剂,它可以通过机械激活的内置电场来增强二氮(N2)还原的化学动力学,从而调节表面电化学电位。本文报道了压电型铌酸钾钠(K0.5Na0.5NbO3, KNN)作为无铅助催化剂,在温和条件下用于氨(NH3)的电化学氮还原反应,对银(Ag)催化剂的影响。对于压电活化,修饰的h电池采用工作电极(Ag/KNN)进行设计,在电化学过程中实现外部机械驱动。结果表明,局域电场在KNN表面产生的瞬态偶极子使NH3的产量提高了3倍(3.6 μg h−1 cm−2),法拉第效率高达75%。通过驱动感应、线性扫描伏安法、电化学阻抗谱、计时安培法和开路电位测量来研究压电影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信