Ensemble of Active Acid Sites on Amorphous Silica–Alumina Surfaces for Catalytic Cracking

Dr. Kaustubh J. Sawant, Dr. David Stockwell, Dr. Anthony Debellis, Lucas Dorazio, Prof. Philippe Sautet
{"title":"Ensemble of Active Acid Sites on Amorphous Silica–Alumina Surfaces for Catalytic Cracking","authors":"Dr. Kaustubh J. Sawant,&nbsp;Dr. David Stockwell,&nbsp;Dr. Anthony Debellis,&nbsp;Lucas Dorazio,&nbsp;Prof. Philippe Sautet","doi":"10.1002/ange.202506711","DOIUrl":null,"url":null,"abstract":"<p>Amorphous silica–alumina are critical materials in catalysis, particularly for fluid catalytic cracking (FCC). However, the atomic scale understanding of the active sites has been challenging, because of the nonuniform atomic distribution and the material's amorphous nature. Here, we use density functional theory (DFT), machine learning potentials and sampling methods to investigate the relationship between structure and acidity in silica-modified alumina. Under FCC conditions, we predict an ensemble of acid sites with diverse local structures and a spectrum of acid strengths, including zeolite-like bridging Brønsted acid sites (BAS) and pseudo-bridging silanol BAS. This distribution is influenced by surface structure, Si coverage, and extent of hydroxylation, shaped by synthesis methods and reaction conditions. Experiments using a model Si-stabilized alumina catalyst confirm that Brønsted acidity increases with Si content, peaking at an optimal value before declining. These insights provide a foundation for designing efficient solid acid catalysts for industrial applications.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202506711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous silica–alumina are critical materials in catalysis, particularly for fluid catalytic cracking (FCC). However, the atomic scale understanding of the active sites has been challenging, because of the nonuniform atomic distribution and the material's amorphous nature. Here, we use density functional theory (DFT), machine learning potentials and sampling methods to investigate the relationship between structure and acidity in silica-modified alumina. Under FCC conditions, we predict an ensemble of acid sites with diverse local structures and a spectrum of acid strengths, including zeolite-like bridging Brønsted acid sites (BAS) and pseudo-bridging silanol BAS. This distribution is influenced by surface structure, Si coverage, and extent of hydroxylation, shaped by synthesis methods and reaction conditions. Experiments using a model Si-stabilized alumina catalyst confirm that Brønsted acidity increases with Si content, peaking at an optimal value before declining. These insights provide a foundation for designing efficient solid acid catalysts for industrial applications.

Abstract Image

无定形二氧化硅-氧化铝表面活性酸位系综催化裂化
无定形二氧化硅-氧化铝是催化,特别是流体催化裂化(FCC)的关键材料。然而,由于不均匀的原子分布和材料的无定形性质,对活性位点的原子尺度理解一直具有挑战性。在这里,我们使用密度泛函理论(DFT),机器学习电位和采样方法来研究二氧化硅改性氧化铝的结构和酸度之间的关系。在催化裂化条件下,我们预测了具有不同局部结构和酸强度谱的酸位集合,包括类似沸石的桥接br / nsted酸位(BAS)和拟桥接硅烷醇BAS。这种分布受表面结构、硅覆盖和羟基化程度的影响,受合成方法和反应条件的影响。使用模型硅稳定氧化铝催化剂的实验证实,Brønsted酸度随着硅含量的增加而增加,在达到最佳值后下降。这些见解为设计工业应用的高效固体酸催化剂提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信