Distribution Relationship of Quantum Battery Capacity

IF 4.3 Q1 OPTICS
Yiding Wang, Xiaofen Huang, Tinggui Zhang
{"title":"Distribution Relationship of Quantum Battery Capacity","authors":"Yiding Wang,&nbsp;Xiaofen Huang,&nbsp;Tinggui Zhang","doi":"10.1002/qute.202400652","DOIUrl":null,"url":null,"abstract":"<p>The distribution relationship of quantum battery capacity is investigated. First, it is proved that for two-qubit <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>-states, the sum of the subsystem battery capacities does not exceed the total system's battery capacity, and the conditions are provided under which they are equal. Then define the difference between the total system's and subsystems' battery capacities as the residual battery capacity (<span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>B</mi>\n <mi>C</mi>\n </mrow>\n <annotation>$RBC$</annotation>\n </semantics></math>) and show that this can be divided into coherent and incoherent components. Furthermore, it is observed that this capacity monogamy relation for quantum batteries extends to general <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-qubit <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> states and any <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-qubit <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> state's battery capacity distribution can be optimized to achieve capacity gain through an appropriate global unitary evolution. Specifically, for general three-qubit <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> states, stronger distributive relations are derived for battery capacity. Quantum batteries are believed to hold significant potential for outperforming classical counterparts in the future. These findings contribute to the development and enhancement of quantum battery theory.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202400652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The distribution relationship of quantum battery capacity is investigated. First, it is proved that for two-qubit X $X$ -states, the sum of the subsystem battery capacities does not exceed the total system's battery capacity, and the conditions are provided under which they are equal. Then define the difference between the total system's and subsystems' battery capacities as the residual battery capacity ( R B C $RBC$ ) and show that this can be divided into coherent and incoherent components. Furthermore, it is observed that this capacity monogamy relation for quantum batteries extends to general n $n$ -qubit X $X$ states and any n $n$ -qubit X $X$ state's battery capacity distribution can be optimized to achieve capacity gain through an appropriate global unitary evolution. Specifically, for general three-qubit X $X$ states, stronger distributive relations are derived for battery capacity. Quantum batteries are believed to hold significant potential for outperforming classical counterparts in the future. These findings contribute to the development and enhancement of quantum battery theory.

Abstract Image

Abstract Image

量子电池容量分布关系
研究了量子电池容量的分布关系。首先,证明了对于双量子位X$ X$ -状态,子系统电池容量总和不超过系统总电池容量,并给出了它们相等的条件。然后将整个系统与子系统的电池容量之差定义为剩余电池容量(RBC$ RBC$),并表明剩余电池容量可分为相干组件和非相干组件。此外,我们观察到量子电池的这种容量一夫一妻关系扩展到一般的n$ n$ -qubit X$ X$状态,并且任何n$ n$ -qubit X$ X$状态的电池容量分布都可以通过适当的全局酉进化来优化以实现容量增益。具体来说,对于一般的三量子位X$ X$状态,导出了电池容量更强的分布关系。量子电池被认为在未来具有超越传统电池的巨大潜力。这些发现有助于量子电池理论的发展和增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信