Evolving Data-Driven Strategies for the Characterization of Supramolecular Polymers and Systems

Stef A. H. Jansen, Ghislaine Vantomme, E. W. Meijer
{"title":"Evolving Data-Driven Strategies for the Characterization of Supramolecular Polymers and Systems","authors":"Stef A. H. Jansen,&nbsp;Ghislaine Vantomme,&nbsp;E. W. Meijer","doi":"10.1002/ange.202509122","DOIUrl":null,"url":null,"abstract":"<p>Inspired by the dynamic assembly of fibrillar proteins in biology, research on supramolecular polymers has progressed rapidly toward the development of synthetic multicomponent systems. In this review, we highlight recent advances in the study of supramolecular polymers in solution, with an emphasis on how combined computational and experimental approaches deepen our understanding of these systems. In particular, these studies have elucidated the mechanisms of protein aggregation and provided insights into the characteristics of synthetic systems. We discuss the classification of these polymers and systems, highlighting how their different interaction modes and microstructures give rise to diverse structural and functional properties. In addition, we outline the emerging role of machine learning as a powerful tool to navigate the inherent complexity of these systems, thereby enhancing strategies for rational design and characterization. This review highlights how computational approaches, from traditional modeling to emerging machine learning techniques, enable the experimental characterization and understanding of supramolecular polymer chemistry.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202509122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202509122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the dynamic assembly of fibrillar proteins in biology, research on supramolecular polymers has progressed rapidly toward the development of synthetic multicomponent systems. In this review, we highlight recent advances in the study of supramolecular polymers in solution, with an emphasis on how combined computational and experimental approaches deepen our understanding of these systems. In particular, these studies have elucidated the mechanisms of protein aggregation and provided insights into the characteristics of synthetic systems. We discuss the classification of these polymers and systems, highlighting how their different interaction modes and microstructures give rise to diverse structural and functional properties. In addition, we outline the emerging role of machine learning as a powerful tool to navigate the inherent complexity of these systems, thereby enhancing strategies for rational design and characterization. This review highlights how computational approaches, from traditional modeling to emerging machine learning techniques, enable the experimental characterization and understanding of supramolecular polymer chemistry.

Abstract Image

不断发展的数据驱动策略表征超分子聚合物和系统
受生物学中纤维蛋白动态组装的启发,超分子聚合物的研究朝着合成多组分体系的方向迅速发展。在这篇综述中,我们强调了溶液中超分子聚合物研究的最新进展,重点是如何结合计算和实验方法加深我们对这些系统的理解。特别是,这些研究阐明了蛋白质聚集的机制,并为合成系统的特征提供了见解。我们讨论了这些聚合物和系统的分类,强调了它们不同的相互作用模式和微观结构如何产生不同的结构和功能特性。此外,我们概述了机器学习作为导航这些系统固有复杂性的强大工具的新兴作用,从而增强了合理设计和表征的策略。这篇综述强调了计算方法,从传统的建模到新兴的机器学习技术,如何使超分子聚合物化学的实验表征和理解成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信