Polyhydroxyalkanoate biopolyesters as extracellular matrix scaffolds by 3D printing technology

IF 3.6 4区 化学 Q2 POLYMER SCIENCE
Anuchan Panaksri, Nuttapol Tanadchangsaeng
{"title":"Polyhydroxyalkanoate biopolyesters as extracellular matrix scaffolds by 3D printing technology","authors":"Anuchan Panaksri,&nbsp;Nuttapol Tanadchangsaeng","doi":"10.1002/pi.6740","DOIUrl":null,"url":null,"abstract":"<p>Microbial polyhydroxyalkanoates (PHAs) are biocompatible and biodegradable polyesters synthesized from biomass resources by various microbes in appropriate growth conditions as intracellular energy storage. PHAs have great biocompatibility, low immunological response, bioresorption, non-toxic degradation products and possibly resilient cell adhesion properties. Their mechanical characteristics can be modified to fit numerous tissues ranging from very soft (skin) to hard (bone). Multiple approaches have been used to create well-defined architectures with the best characteristics for processing as medical devices and biomedical application tools. The implementation of PHAs into medical devices as new functional materials with advanced 3D printing techniques has been described. Additionally, new challenges in improving PHA-based bioinks for creating scaffolds with enhanced biodegradation control suitable for tissue regeneration are also elucidated in this review. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 10","pages":"874-887"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://scijournals.onlinelibrary.wiley.com/doi/10.1002/pi.6740","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial polyhydroxyalkanoates (PHAs) are biocompatible and biodegradable polyesters synthesized from biomass resources by various microbes in appropriate growth conditions as intracellular energy storage. PHAs have great biocompatibility, low immunological response, bioresorption, non-toxic degradation products and possibly resilient cell adhesion properties. Their mechanical characteristics can be modified to fit numerous tissues ranging from very soft (skin) to hard (bone). Multiple approaches have been used to create well-defined architectures with the best characteristics for processing as medical devices and biomedical application tools. The implementation of PHAs into medical devices as new functional materials with advanced 3D printing techniques has been described. Additionally, new challenges in improving PHA-based bioinks for creating scaffolds with enhanced biodegradation control suitable for tissue regeneration are also elucidated in this review. © 2024 Society of Chemical Industry.

Abstract Image

Abstract Image

Abstract Image

3D打印技术制备聚羟基烷酸生物聚酯细胞外基质支架
微生物聚羟基烷酸酯(PHAs)是一种生物相容性和可生物降解的聚酯,由各种微生物在适当的生长条件下从生物质资源中合成,作为细胞内的能量储存。pha具有良好的生物相容性,低免疫反应,生物再吸收,无毒降解产物和可能具有弹性细胞粘附特性。它们的机械特性可以修改,以适应从非常柔软(皮肤)到坚硬(骨骼)的许多组织。已经使用了多种方法来创建定义良好的体系结构,这些体系结构具有作为医疗设备和生物医学应用工具进行处理的最佳特性。描述了pha作为具有先进3D打印技术的新功能材料在医疗设备中的实施。此外,本文还阐述了pha基生物墨水在制备适合组织再生的具有增强生物降解控制的支架方面所面临的新挑战。©2024化学工业学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信