Muhammad Sajid, Wajeeha Fatima, Khuram Ali, Hafiza Saima Batool, Esha Fatima, Suriani Abu Bakar
{"title":"Innovative pathways to efficiency in organic solar cells: a DFT perspective on small donors","authors":"Muhammad Sajid, Wajeeha Fatima, Khuram Ali, Hafiza Saima Batool, Esha Fatima, Suriani Abu Bakar","doi":"10.1007/s10825-025-02418-y","DOIUrl":null,"url":null,"abstract":"<div><p>Innovative small molecule donors (SMDs) in organic solar cells (OSCs) have gained attention due to their high absorbance and tunable band gaps, enabling improved efficiency and performance. In this study, three novel SMDs (M1, M2, and M3) were proposed by modifying terminal hydrogen atoms with fluorine (M1), methyl (M2), and methoxy (M3) groups. These substitutions were systematically analyzed for their effects on structural, electronic, and optical properties using density functional theory (DFT). The HOMO–LUMO energy gaps were found to be 2.03 eV (M1), 2.02 eV (M2), and 2.00 eV (M3). M3 also exhibited the highest absorption wavelength (<i>λ</i>_max) of 743 nm, the lowest excitation energy (1.67 eV), and the highest light-harvesting efficiency (LHE = 0.9996). Charge transfer analyses showed that M3 had the lowest electron reorganization energy (<i>λ</i>_e = 0.0046 eV), indicating superior charge mobility. These findings suggest that M3 is the most promising candidate for efficient OSC applications. Computations were performed using the Gaussian 09 suite, employing the B3LYP functional with the 6-31G(d,p) basis set and TD-DFT for excited state calculations. Solvent effects were considered using the PCM model, and CAM-B3LYP was used for excitation energy validation.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02418-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Innovative small molecule donors (SMDs) in organic solar cells (OSCs) have gained attention due to their high absorbance and tunable band gaps, enabling improved efficiency and performance. In this study, three novel SMDs (M1, M2, and M3) were proposed by modifying terminal hydrogen atoms with fluorine (M1), methyl (M2), and methoxy (M3) groups. These substitutions were systematically analyzed for their effects on structural, electronic, and optical properties using density functional theory (DFT). The HOMO–LUMO energy gaps were found to be 2.03 eV (M1), 2.02 eV (M2), and 2.00 eV (M3). M3 also exhibited the highest absorption wavelength (λ_max) of 743 nm, the lowest excitation energy (1.67 eV), and the highest light-harvesting efficiency (LHE = 0.9996). Charge transfer analyses showed that M3 had the lowest electron reorganization energy (λ_e = 0.0046 eV), indicating superior charge mobility. These findings suggest that M3 is the most promising candidate for efficient OSC applications. Computations were performed using the Gaussian 09 suite, employing the B3LYP functional with the 6-31G(d,p) basis set and TD-DFT for excited state calculations. Solvent effects were considered using the PCM model, and CAM-B3LYP was used for excitation energy validation.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.