Emulsion-based liquid-phase microextraction using rhamnolipid bioaggregates for determination of paracetamol in human urine samples and tablet formulation
{"title":"Emulsion-based liquid-phase microextraction using rhamnolipid bioaggregates for determination of paracetamol in human urine samples and tablet formulation","authors":"Seyed Ammar Haeri, Shahryar Abbasi, Ali Naghipour","doi":"10.1007/s13738-025-03245-5","DOIUrl":null,"url":null,"abstract":"<div><p>This work describes a simple, sensitive, and environmentally friendly analytical technique for the determining of paracetamol in human urine samples and tablet formulation. The current study for the extraction and enrichment of paracetamol is based on the use of rhamnolipid biosurfactants in emulsion-based liquid-phase microextraction. The separation mechanism of paracetamol is based on the emulsion formation of the biosurfactant-rich phase. First, a bioemulsion solution (colloidal phase) was formed and then the analyte was isolated onto the non-aqueous phase. The second step consists of backextraction of the analyte into an aqueous acceptor phase. Finally, the aqueous acceptor phase was withdrawn using a microsyringe and injected into a liquid chromatography instrument for quantitative analysis. The ability of rhamnolipid biosurfactants to form a stable colloidal phase with regions of different polarities can lead to extraction analyte using van der Waals interactions. Considering the biodegradability of biosurfactants and the removal of chemical surfactants in the sample preparation process, the present method is environmentally friendly. Several influencer factors on extraction efficiency including the amount of rhamnolipid biosurfactant, methanol volume, pH, extraction time, ionic strength, and centrifugation time were investigated and optimized. Under optimal conditions, the enrichment factor for the paracetamol was 160. Also, good linearity was obtained in the range 21–100 µg L<sup>−1</sup>, with coefficients of determination (<i>r</i><sup>2</sup>) ˃ 0.993.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"22 8","pages":"1595 - 1602"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-025-03245-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work describes a simple, sensitive, and environmentally friendly analytical technique for the determining of paracetamol in human urine samples and tablet formulation. The current study for the extraction and enrichment of paracetamol is based on the use of rhamnolipid biosurfactants in emulsion-based liquid-phase microextraction. The separation mechanism of paracetamol is based on the emulsion formation of the biosurfactant-rich phase. First, a bioemulsion solution (colloidal phase) was formed and then the analyte was isolated onto the non-aqueous phase. The second step consists of backextraction of the analyte into an aqueous acceptor phase. Finally, the aqueous acceptor phase was withdrawn using a microsyringe and injected into a liquid chromatography instrument for quantitative analysis. The ability of rhamnolipid biosurfactants to form a stable colloidal phase with regions of different polarities can lead to extraction analyte using van der Waals interactions. Considering the biodegradability of biosurfactants and the removal of chemical surfactants in the sample preparation process, the present method is environmentally friendly. Several influencer factors on extraction efficiency including the amount of rhamnolipid biosurfactant, methanol volume, pH, extraction time, ionic strength, and centrifugation time were investigated and optimized. Under optimal conditions, the enrichment factor for the paracetamol was 160. Also, good linearity was obtained in the range 21–100 µg L−1, with coefficients of determination (r2) ˃ 0.993.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.