LIVOX-CAM: Adaptive Coarse-to-Fine Visual-Assisted LiDAR Odometry for Solid-State LiDAR

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Xiaolong Cheng;Keke Geng;Zhichao Liu;Tianxiao Ma;Ye Sun
{"title":"LIVOX-CAM: Adaptive Coarse-to-Fine Visual-Assisted LiDAR Odometry for Solid-State LiDAR","authors":"Xiaolong Cheng;Keke Geng;Zhichao Liu;Tianxiao Ma;Ye Sun","doi":"10.1109/LRA.2025.3606803","DOIUrl":null,"url":null,"abstract":"The application of solid-state LiDAR is expanding across diverse scenarios. However, most existing methods rely on IMU data fusion to achieve stable performance. This letter presents LIVOX-CAM, a visual-assisted LiDAR odometry based on KISS-ICP, specifically tailored for small field-of-view (FoV) solid-state LiDAR. The system adopts a two-stage architecture comprising a front-end for data pre-processing and a back-end for coarse-to-fine iterative pose optimization. The system is designed to significantly broaden its application scenarios by incorporating a spatial adaptive module and visual assistance. Extensive experiments on public and private datasets show that, even without IMU input, the proposed method achieves robust and accurate performance in challenging scenes, including autonomous driving, degraded scenarios, unstructured environments, and aerial mapping, exhibiting strong competitiveness against state-of-the-art approaches.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 10","pages":"10982-10989"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11151754/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The application of solid-state LiDAR is expanding across diverse scenarios. However, most existing methods rely on IMU data fusion to achieve stable performance. This letter presents LIVOX-CAM, a visual-assisted LiDAR odometry based on KISS-ICP, specifically tailored for small field-of-view (FoV) solid-state LiDAR. The system adopts a two-stage architecture comprising a front-end for data pre-processing and a back-end for coarse-to-fine iterative pose optimization. The system is designed to significantly broaden its application scenarios by incorporating a spatial adaptive module and visual assistance. Extensive experiments on public and private datasets show that, even without IMU input, the proposed method achieves robust and accurate performance in challenging scenes, including autonomous driving, degraded scenarios, unstructured environments, and aerial mapping, exhibiting strong competitiveness against state-of-the-art approaches.
LIVOX-CAM:用于固体激光雷达的自适应粗到精视觉辅助激光雷达里程计
固态激光雷达的应用正在各种场景中扩展。然而,现有的方法大多依赖于IMU数据融合来实现稳定的性能。这封信介绍了LIVOX-CAM,一种基于KISS-ICP的视觉辅助激光雷达里程计,专门为小视场(FoV)固态激光雷达量身定制。该系统采用两阶段架构,前端用于数据预处理,后端用于粗精迭代位姿优化。该系统旨在通过结合空间自适应模块和视觉辅助来显着拓宽其应用场景。在公共和私人数据集上进行的大量实验表明,即使没有IMU输入,该方法也能在具有挑战性的场景(包括自动驾驶、退化场景、非结构化环境和航空测绘)中实现鲁棒性和准确性,与最先进的方法相比具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信