Miniaturized and Cost-Effective Programmable 2.5D/3.5D Platforms Enabled by Scalable Embedded Active Bridge Chipset

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wei Lu;Jie Zhang;Yi-Hui Wei;Hsu-Ming Hsiao;Sih-Han Li;Chao-Kai Hsu;Chih-Cheng Hsiao;Feng-Hsiang Lo;Shyh-Shyuan Sheu;Chin-Hung Wang;Ching-Iang Li;Yung-Sheng Chang;Ming-Ji Dai;Wei-Chung Lo;Shih-Chieh Chang;Hung-Ming Chen;Kuan-Neng Chen;Po-Tsang Huang
{"title":"Miniaturized and Cost-Effective Programmable 2.5D/3.5D Platforms Enabled by Scalable Embedded Active Bridge Chipset","authors":"Wei Lu;Jie Zhang;Yi-Hui Wei;Hsu-Ming Hsiao;Sih-Han Li;Chao-Kai Hsu;Chih-Cheng Hsiao;Feng-Hsiang Lo;Shyh-Shyuan Sheu;Chin-Hung Wang;Ching-Iang Li;Yung-Sheng Chang;Ming-Ji Dai;Wei-Chung Lo;Shih-Chieh Chang;Hung-Ming Chen;Kuan-Neng Chen;Po-Tsang Huang","doi":"10.1109/JETCAS.2025.3594169","DOIUrl":null,"url":null,"abstract":"This paper presents the Embedded Multi-die Active Bridge (EMAB) chip, a programmable bridge for cost-effective 2.5D/3.5D packaging technologies. The EMAB chip features a reconfigurable switch array to establish flexible I/O links for connecting multiple chiplets, forming an EMAB chipset based on user needs. It integrates low-dropout regulators (LDOs) for in-package voltage regulation and supports various transmission interfaces, including checkerboard I/Os (50 Mbps–1 Gbps) and MUX I/Os (up to 8 Gbps). Moreover, multiple EMAB chips can be interconnected in a daisy-chain configuration, enabling easy expansion of the EMAB chipset. Additionally, the EMAB chip eliminates TSVs in silicon interposer-based 2.5D packaging technologies and reduces redistribution layer (RDL) complexity through flexible I/O links established within the EMAB chip. Furthermore, EMAB chip can be pre-manufactured as a precast supporting layer (known good die, KGD), which shortens the product development cycle and enhance integration yield. Overall, the EMAB chip offers a miniaturized, low-cost, fast time-to-market and scalable solution for advanced 2.5D/3.5D packaging.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 3","pages":"379-391"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11104218/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the Embedded Multi-die Active Bridge (EMAB) chip, a programmable bridge for cost-effective 2.5D/3.5D packaging technologies. The EMAB chip features a reconfigurable switch array to establish flexible I/O links for connecting multiple chiplets, forming an EMAB chipset based on user needs. It integrates low-dropout regulators (LDOs) for in-package voltage regulation and supports various transmission interfaces, including checkerboard I/Os (50 Mbps–1 Gbps) and MUX I/Os (up to 8 Gbps). Moreover, multiple EMAB chips can be interconnected in a daisy-chain configuration, enabling easy expansion of the EMAB chipset. Additionally, the EMAB chip eliminates TSVs in silicon interposer-based 2.5D packaging technologies and reduces redistribution layer (RDL) complexity through flexible I/O links established within the EMAB chip. Furthermore, EMAB chip can be pre-manufactured as a precast supporting layer (known good die, KGD), which shortens the product development cycle and enhance integration yield. Overall, the EMAB chip offers a miniaturized, low-cost, fast time-to-market and scalable solution for advanced 2.5D/3.5D packaging.
可扩展嵌入式有源桥芯片组支持小型化和高性价比的可编程2.5D/3.5D平台
本文介绍了嵌入式多模有源桥接(EMAB)芯片,这是一种可编程桥接,用于经济高效的2.5D/3.5D封装技术。EMAB芯片采用可重新配置的开关阵列,建立灵活的I/O链路,用于连接多个小芯片,根据用户需求组成EMAB芯片组。它集成了用于封装内电压调节的低差稳压器(ldo),并支持各种传输接口,包括棋盘I/ o (50 Mbps-1 Gbps)和MUX I/ o(高达8 Gbps)。此外,多个EMAB芯片可以在菊花链配置中互连,使EMAB芯片组易于扩展。此外,EMAB芯片消除了基于硅介层的2.5D封装技术中的tsv,并通过在EMAB芯片内建立灵活的I/O链路降低了再分配层(RDL)的复杂性。此外,EMAB芯片可以作为预制支撑层(称为good die, KGD)进行预制造,缩短了产品开发周期,提高了成品率。总体而言,EMAB芯片为先进的2.5D/3.5D封装提供了小型化、低成本、快速上市和可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信