Georg K. J. Fischer;Thomas Schaechtle;Moritz Schabinger;Alexander Richter;Ivo Häring;Fabian Höflinger;Stefan J. Rupitsch
{"title":"MASSLOC: A Massive Sound Source Localization System Based on Direction-of-Arrival Estimation and Complementary Zadoff–Chu Sequences","authors":"Georg K. J. Fischer;Thomas Schaechtle;Moritz Schabinger;Alexander Richter;Ivo Häring;Fabian Höflinger;Stefan J. Rupitsch","doi":"10.1109/TIM.2025.3606066","DOIUrl":null,"url":null,"abstract":"Acoustic indoor localization offers the potential for highly accurate position estimation while generally exhibiting low hardware requirements compared to radio frequency (RF)-based solutions. Furthermore, angular-based localization significantly reduces installation effort by minimizing the number of required fixed anchor nodes. In this article, we propose the so-called MASSLOC system, which leverages sparse 2-D array geometries to localize and identify a large number of concurrently active sources. Additionally, the use of complementary Zadoff–Chu sequences is introduced to enable efficient, beamforming-based source identification. These sequences provide a tradeoff between favorable correlation properties and accurate, unsynchronized direction-of-arrival (DoA) estimation by exhibiting a spectrally balanced waveform. The system is evaluated in both a controlled anechoic chamber and a highly reverberant lobby environment with a reverberation time of 1.6 s. In a laboratory setting, successful DoA estimation and identification of up to 14 simultaneously emitting sources are demonstrated. Adopting a Perspective-n-Point (PnP) calibration approach, the system achieves a median 3-D localization error of 55.7 mm and a median angular error of 0.84° with dynamic source movement of up to 1.9 ms<sup>−1</sup> in the challenging reverberant environment. The multisource capability is also demonstrated and evaluated in that environment with a total of three tags. These results indicate the scalability and robustness of the MASSLOC system, even under challenging acoustic conditions.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-13"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11151304","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11151304/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic indoor localization offers the potential for highly accurate position estimation while generally exhibiting low hardware requirements compared to radio frequency (RF)-based solutions. Furthermore, angular-based localization significantly reduces installation effort by minimizing the number of required fixed anchor nodes. In this article, we propose the so-called MASSLOC system, which leverages sparse 2-D array geometries to localize and identify a large number of concurrently active sources. Additionally, the use of complementary Zadoff–Chu sequences is introduced to enable efficient, beamforming-based source identification. These sequences provide a tradeoff between favorable correlation properties and accurate, unsynchronized direction-of-arrival (DoA) estimation by exhibiting a spectrally balanced waveform. The system is evaluated in both a controlled anechoic chamber and a highly reverberant lobby environment with a reverberation time of 1.6 s. In a laboratory setting, successful DoA estimation and identification of up to 14 simultaneously emitting sources are demonstrated. Adopting a Perspective-n-Point (PnP) calibration approach, the system achieves a median 3-D localization error of 55.7 mm and a median angular error of 0.84° with dynamic source movement of up to 1.9 ms−1 in the challenging reverberant environment. The multisource capability is also demonstrated and evaluated in that environment with a total of three tags. These results indicate the scalability and robustness of the MASSLOC system, even under challenging acoustic conditions.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.