Forming-induced thickness effects on structural response of arched thin-shell metal alloys

IF 7.9 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shilin Chen , Qingxi Yang , Qingzhou Yu , Genmu Shi , Haotian Yin
{"title":"Forming-induced thickness effects on structural response of arched thin-shell metal alloys","authors":"Shilin Chen ,&nbsp;Qingxi Yang ,&nbsp;Qingzhou Yu ,&nbsp;Genmu Shi ,&nbsp;Haotian Yin","doi":"10.1016/j.matdes.2025.114692","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the critical influence of forming-induced thickness variations on arched thin-shell metal components' structural response and rupture behavior, a key challenge in safety-critical applications. An integrated predictive framework combines classical plate theory for initial deformation estimates, explicit dynamic finite element simulations for elastic-plastic analysis, and Kriging-based response surface modeling to map geometric, material, and process parameters to performance metrics. A large-scale simulation campaign across eight isotropic material models and 42,669 configurations identifies the arch rise-to-radius ratio as the dominant factor in post-forming thickness evolution, with non-uniform profiles causing up to <figure><img></figure> deviations in rupture pressures and altering failure modes compared to uniform assumptions. Modal, buckling, and rupture analyses highlight significant impacts on natural frequencies, critical loads, and mechanisms. Experimental validation on 36 Monel Alloy 400 rupture discs achieves high accuracy, with thickness root-mean-square error of <figure><img></figure> (maximum mean absolute percentage error <figure><img></figure>) and rupture pressure errors below <figure><img></figure>, supported by uncertainty analysis (expanded uncertainties <figure><img></figure> at <figure><img></figure> confidence). The generalizable framework, extensible to non-metallic isotropic shells and non-arched geometries, enables enhanced prediction, optimization, and reliability by linking forming outcomes to structural integrity.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"259 ","pages":"Article 114692"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525011128","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the critical influence of forming-induced thickness variations on arched thin-shell metal components' structural response and rupture behavior, a key challenge in safety-critical applications. An integrated predictive framework combines classical plate theory for initial deformation estimates, explicit dynamic finite element simulations for elastic-plastic analysis, and Kriging-based response surface modeling to map geometric, material, and process parameters to performance metrics. A large-scale simulation campaign across eight isotropic material models and 42,669 configurations identifies the arch rise-to-radius ratio as the dominant factor in post-forming thickness evolution, with non-uniform profiles causing up to
deviations in rupture pressures and altering failure modes compared to uniform assumptions. Modal, buckling, and rupture analyses highlight significant impacts on natural frequencies, critical loads, and mechanisms. Experimental validation on 36 Monel Alloy 400 rupture discs achieves high accuracy, with thickness root-mean-square error of
(maximum mean absolute percentage error
) and rupture pressure errors below
, supported by uncertainty analysis (expanded uncertainties
at
confidence). The generalizable framework, extensible to non-metallic isotropic shells and non-arched geometries, enables enhanced prediction, optimization, and reliability by linking forming outcomes to structural integrity.

Abstract Image

成形诱导厚度对拱形薄壳合金结构响应的影响
该研究解决了成形引起的厚度变化对拱形薄壳金属部件的结构响应和破裂行为的关键影响,这是安全关键应用中的一个关键挑战。一个集成的预测框架结合了经典板理论的初始变形估计,明确的动态有限元模拟弹塑性分析,和基于克里格的响应面建模映射几何,材料和工艺参数的性能指标。一项针对8种各向同性材料模型和42,669种配置的大规模模拟活动表明,拱的上升半径比是成形后厚度演变的主要因素,与均匀假设相比,不均匀的轮廓会导致破裂压力的偏差,并改变失效模式。模态、屈曲和断裂分析强调了对固有频率、临界载荷和机制的重大影响。对36片Monel Alloy 400破裂片进行实验验证,获得了较高的精度,厚度均方根误差(最大平均绝对百分比误差)和破裂压力误差如下,并得到不确定度分析(置信度下扩展不确定度)的支持。可推广的框架,可扩展到非金属各向同性外壳和非拱形几何形状,通过将成形结果与结构完整性联系起来,增强了预测、优化和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信