Local structural distortion and energy gradient enhance lithium ionic conductivity in high-entropy oxide

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qingyuan Li , Hsin-Pei Ho , Zhipeng Zeng , Wei Li , Qingsong Wang , Kang Dong , Karnpiwat Tantratian , Lei Chen , Gwenaelle Rousse , Xiner Lu , Kai He , Yan Chen , Nhat Anh Thieu , Shaoshuai Chen , Xiujuan Chen , Dawei Zhang , Hanchen Tian , Yi Wang , Liang Ma , Matthew Frost , Xingbo Liu
{"title":"Local structural distortion and energy gradient enhance lithium ionic conductivity in high-entropy oxide","authors":"Qingyuan Li ,&nbsp;Hsin-Pei Ho ,&nbsp;Zhipeng Zeng ,&nbsp;Wei Li ,&nbsp;Qingsong Wang ,&nbsp;Kang Dong ,&nbsp;Karnpiwat Tantratian ,&nbsp;Lei Chen ,&nbsp;Gwenaelle Rousse ,&nbsp;Xiner Lu ,&nbsp;Kai He ,&nbsp;Yan Chen ,&nbsp;Nhat Anh Thieu ,&nbsp;Shaoshuai Chen ,&nbsp;Xiujuan Chen ,&nbsp;Dawei Zhang ,&nbsp;Hanchen Tian ,&nbsp;Yi Wang ,&nbsp;Liang Ma ,&nbsp;Matthew Frost ,&nbsp;Xingbo Liu","doi":"10.1016/j.mattod.2025.08.012","DOIUrl":null,"url":null,"abstract":"<div><div>Li-rich disordered rock-salt oxides have been extensively studied as electrode materials for lithium-ion batteries, however, their diffusion of lithium ions relies on the presence of excess lithium-ion content (&gt;54.5 atom% relative to total metal ions). An emerging high-entropy strategy can reduce the lithium-ion content and enhance lithium-ion conductivity in sodium superionic conductor (e.g. Li(Ti,Zr,Sn,Hf)<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>). However, the high ionic conductivity in Li-stuffed disordered rock-salt oxides with low lithium-ion content is generally attributed to its cocktail effect, and the underlying mechanisms remains unclear. Here, we develop a robust Li-poor disordered rock-salt high-entropy oxide, (MgCoNiCuZn)<sub>0.75</sub>Li<sub>0.25</sub>O (HEOLi) as an artificial solid electrolyte interphase coating layer to stabilize lithium metal anodes, achieving an impressive cycling stability of over 15000 h. We elucidate a cocktail effect of HEOLi arising from its disordered structure of HEOLi, with unique crystallographic local structural distortions, delocalized electron structure, and energy gradients, enabling high Li-ion conductivity. These energy gradients reduce the overall energy barrier and promote Li<sup>+</sup> hopping through preferential pathways within the HEOLi. This work offers insight into the cocktail effect of high-entropy and the Li-ion conduction mechanism, facilitating the rational design of conductive high-entropy ceramics.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"89 ","pages":"Pages 26-34"},"PeriodicalIF":22.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125003499","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Li-rich disordered rock-salt oxides have been extensively studied as electrode materials for lithium-ion batteries, however, their diffusion of lithium ions relies on the presence of excess lithium-ion content (>54.5 atom% relative to total metal ions). An emerging high-entropy strategy can reduce the lithium-ion content and enhance lithium-ion conductivity in sodium superionic conductor (e.g. Li(Ti,Zr,Sn,Hf)2(PO4)3). However, the high ionic conductivity in Li-stuffed disordered rock-salt oxides with low lithium-ion content is generally attributed to its cocktail effect, and the underlying mechanisms remains unclear. Here, we develop a robust Li-poor disordered rock-salt high-entropy oxide, (MgCoNiCuZn)0.75Li0.25O (HEOLi) as an artificial solid electrolyte interphase coating layer to stabilize lithium metal anodes, achieving an impressive cycling stability of over 15000 h. We elucidate a cocktail effect of HEOLi arising from its disordered structure of HEOLi, with unique crystallographic local structural distortions, delocalized electron structure, and energy gradients, enabling high Li-ion conductivity. These energy gradients reduce the overall energy barrier and promote Li+ hopping through preferential pathways within the HEOLi. This work offers insight into the cocktail effect of high-entropy and the Li-ion conduction mechanism, facilitating the rational design of conductive high-entropy ceramics.

Abstract Image

局部结构畸变和能量梯度增强了高熵氧化物中锂离子的电导率
富锂无序岩盐氧化物作为锂离子电池的电极材料已被广泛研究,然而,它们的锂离子扩散依赖于过量锂离子含量的存在(相对于总金属离子的54.5原子%)。一种新兴的高熵策略可以降低锂离子含量,提高锂离子在钠超离子导体(如Li(Ti,Zr,Sn,Hf)2(PO4)3)中的电导率。然而,低锂离子含量的锂填充无序岩盐氧化物的高离子电导率通常归因于其鸡尾酒效应,其潜在机制尚不清楚。在这里,我们开发了一种强大的贫锂无序岩盐高熵氧化物(MgCoNiCuZn)0.75Li0.25O (HEOLi)作为人造固体电解质间相涂层来稳定锂金属阳极,实现了超过15000小时的令人惊讶的循环稳定性。我们阐明了HEOLi的鸡尾酒效应,HEOLi具有独特的晶体局部结构扭曲,离域电子结构和能量梯度,使锂离子具有高导电性。这些能量梯度降低了整体能量势垒,促进Li+在HEOLi内通过优先途径跳变。本研究对高熵的鸡尾酒效应和锂离子的传导机理有了深入的认识,有助于导电高熵陶瓷的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信