Bianca Haberl , Malcolm Guthrie , Gang Seob Jung , Leonardus B. Bayu Aji , Jamie J. Molaison , Guoyin Shen , Stephan Irle , Jodie E. Bradby
{"title":"Pressure-driven density match nucleates metastable r8 phases from amorphous Si and Ge","authors":"Bianca Haberl , Malcolm Guthrie , Gang Seob Jung , Leonardus B. Bayu Aji , Jamie J. Molaison , Guoyin Shen , Stephan Irle , Jodie E. Bradby","doi":"10.1016/j.mattod.2025.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>The pressure–temperature phase behavior of covalent disordered solids such as amorphous silicon and germanium is complex. Questions remain on possible glass transitions, on polyamorphism via amorphous–amorphous transitions, on connections with liquid–liquid transitions, on structure-behavior relationships, and on their potential as precursor for novel methods for material discovery. Here we demonstrate experimentally the nucleation of a metastable, four-fold coordinated rhombohedral r8 phase from pure amorphous silicon and germanium upon room temperature compression at pressures below 10 GPa. Accompanying theory reveals a strong pressure-driven distortion of the bond angle transforming the starting tetrahedral low-density amorphous network to a distorted four-fold coordinated medium-density state. This state is of lower density than metallic high-density networks, resembles the crystalline r8 phase and initiates its nucleation. Our finding shows that polyamorphism is not the only possible transformation mode for these amorphous solids and that instead nucleation of interesting functional phases at potentially useful pressures is possible. Such novel access modes to metastable structures are critical for future exploitability and could be useful for other tetrahedral materials including carbon, where the related (bc8) post-diamond phase remains elusive. Our observed density match between an amorphous and a metastable crystalline phase clearly allows for a new phase transition pathway, while corresponding theory demonstrates how carefully validated atomistic simulations can guide prediction, discovery and synthesis of novel material structures.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"89 ","pages":"Pages 140-149"},"PeriodicalIF":22.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125003396","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The pressure–temperature phase behavior of covalent disordered solids such as amorphous silicon and germanium is complex. Questions remain on possible glass transitions, on polyamorphism via amorphous–amorphous transitions, on connections with liquid–liquid transitions, on structure-behavior relationships, and on their potential as precursor for novel methods for material discovery. Here we demonstrate experimentally the nucleation of a metastable, four-fold coordinated rhombohedral r8 phase from pure amorphous silicon and germanium upon room temperature compression at pressures below 10 GPa. Accompanying theory reveals a strong pressure-driven distortion of the bond angle transforming the starting tetrahedral low-density amorphous network to a distorted four-fold coordinated medium-density state. This state is of lower density than metallic high-density networks, resembles the crystalline r8 phase and initiates its nucleation. Our finding shows that polyamorphism is not the only possible transformation mode for these amorphous solids and that instead nucleation of interesting functional phases at potentially useful pressures is possible. Such novel access modes to metastable structures are critical for future exploitability and could be useful for other tetrahedral materials including carbon, where the related (bc8) post-diamond phase remains elusive. Our observed density match between an amorphous and a metastable crystalline phase clearly allows for a new phase transition pathway, while corresponding theory demonstrates how carefully validated atomistic simulations can guide prediction, discovery and synthesis of novel material structures.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.