Falkner-Skan thermal flow of a radiative paraffin-based ternary hybrid nanomaterial over a permeable wedge

Q1 Chemical Engineering
Talha Anwar , M. Faisal , Karthikhesvaran Sudhakar Sharmila Karthick , K. Loganathan , Balachandra Pattanaik
{"title":"Falkner-Skan thermal flow of a radiative paraffin-based ternary hybrid nanomaterial over a permeable wedge","authors":"Talha Anwar ,&nbsp;M. Faisal ,&nbsp;Karthikhesvaran Sudhakar Sharmila Karthick ,&nbsp;K. Loganathan ,&nbsp;Balachandra Pattanaik","doi":"10.1016/j.ijft.2025.101407","DOIUrl":null,"url":null,"abstract":"<div><div>Paraffin-based nanomaterials have found vast applications in electronics cooling, solar collectors, thermal energy storage, biomedical devices, aerospace systems, and phase change efficiency. The present model deals with the Falkner-Skan thermal dynamics of a ternary hybrid nanomaterial (THNM) comprising spherical cobalt, cylindrical gold, and platelet copper nanoparticles in paraffin over an extending/contracting wedge. Thermal flow attributes are enhanced by combining a magnetic field, thermal radiation, suction/injection, and magnetic dissipation effects. A non-dimensional mathematical model is formulated using the fundamental laws of thermal fluid dynamics, thermophysical properties of nanoparticles, scaling transformations, and the Prandtl boundary layer approach. The formulated problem is then solved numerically using the Keller-box method. The obtained results for the flow-field function, temperature function, skin friction coefficient, and the Nusselt number are visualized graphically for the dissimilar values of the involved constraints. It is observed that paraffin-based ternary hybrid nanofluid (paraffin+Co+Au+Cu) demonstrates superior thermal and momentum transport performance by effectively balancing nanoparticle contributions, radiation, magnetic fields, and flow parameters. While cobalt enhances skin friction and heat transfer, gold and copper improve thermal transport, and favorable pressure gradients with suction further boost efficiency, making these nanofluids highly promising for advanced thermal management applications.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101407"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Paraffin-based nanomaterials have found vast applications in electronics cooling, solar collectors, thermal energy storage, biomedical devices, aerospace systems, and phase change efficiency. The present model deals with the Falkner-Skan thermal dynamics of a ternary hybrid nanomaterial (THNM) comprising spherical cobalt, cylindrical gold, and platelet copper nanoparticles in paraffin over an extending/contracting wedge. Thermal flow attributes are enhanced by combining a magnetic field, thermal radiation, suction/injection, and magnetic dissipation effects. A non-dimensional mathematical model is formulated using the fundamental laws of thermal fluid dynamics, thermophysical properties of nanoparticles, scaling transformations, and the Prandtl boundary layer approach. The formulated problem is then solved numerically using the Keller-box method. The obtained results for the flow-field function, temperature function, skin friction coefficient, and the Nusselt number are visualized graphically for the dissimilar values of the involved constraints. It is observed that paraffin-based ternary hybrid nanofluid (paraffin+Co+Au+Cu) demonstrates superior thermal and momentum transport performance by effectively balancing nanoparticle contributions, radiation, magnetic fields, and flow parameters. While cobalt enhances skin friction and heat transfer, gold and copper improve thermal transport, and favorable pressure gradients with suction further boost efficiency, making these nanofluids highly promising for advanced thermal management applications.
辐射石蜡基三元杂化纳米材料在可渗透楔块上的Falkner-Skan热流
石蜡基纳米材料在电子冷却、太阳能集热器、热能储存、生物医学设备、航空航天系统和相变效率方面有着广泛的应用。本模型研究了一种三元杂化纳米材料(THNM)的Falkner-Skan热动力学,该材料由石蜡中的球形钴、圆柱形金和片状铜纳米颗粒组成。热流特性通过结合磁场、热辐射、吸力/注入和磁耗散效应得到增强。利用热流体动力学的基本定律、纳米颗粒的热物理性质、缩放变换和普朗特边界层方法,建立了一个无量纲数学模型。然后用凯勒盒法对公式问题进行数值求解。流场函数、温度函数、表面摩擦系数和努塞尔数的计算结果以图形形式显示。研究发现,石蜡基三元杂化纳米流体(石蜡+Co+Au+Cu)通过有效地平衡纳米颗粒的贡献、辐射、磁场和流动参数,表现出优越的热输运和动量输运性能。虽然钴可以增强表面摩擦和传热,但金和铜可以改善热传递,并且具有吸力的有利压力梯度进一步提高了效率,使这些纳米流体在高级热管理应用中非常有前途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信