Building novel solitary wave solutions for the generalized non-linear (3+1)-dimensional wave equation with gas bubbles in fluids using an analytic method

Q1 Mathematics
Abeer S. Khalifa , Niveen M. Badra , Hamdy M. Ahmed , Wafaa B. Rabie , Homan Emadifar , Karim K. Ahmed
{"title":"Building novel solitary wave solutions for the generalized non-linear (3+1)-dimensional wave equation with gas bubbles in fluids using an analytic method","authors":"Abeer S. Khalifa ,&nbsp;Niveen M. Badra ,&nbsp;Hamdy M. Ahmed ,&nbsp;Wafaa B. Rabie ,&nbsp;Homan Emadifar ,&nbsp;Karim K. Ahmed","doi":"10.1016/j.padiff.2025.101272","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the generalized nonlinear (3+1)-dimensional wave equation using an analytical technique — the Extended F-expansion method — to derive a variety of exact wave solutions and analyze the dynamic behavior of distinct wave profiles. The study presents several types of soliton solutions, including dark, bright, singular, periodic, and singular periodic forms. To the best of our knowledge, these specific solutions have not been previously reported in the literature. By assigning appropriate values to the free parameters, the behavior of the obtained solutions is illustrated through two- and three-dimensional plots, as well as corresponding contour diagrams. The proposed analytical method not only contributes to the theoretical understanding of nonlinear wave phenomena but also demonstrates practical relevance in applied sciences, particularly in fluid mechanics and engineering contexts involving gas-liquid interactions.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"16 ","pages":"Article 101272"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the generalized nonlinear (3+1)-dimensional wave equation using an analytical technique — the Extended F-expansion method — to derive a variety of exact wave solutions and analyze the dynamic behavior of distinct wave profiles. The study presents several types of soliton solutions, including dark, bright, singular, periodic, and singular periodic forms. To the best of our knowledge, these specific solutions have not been previously reported in the literature. By assigning appropriate values to the free parameters, the behavior of the obtained solutions is illustrated through two- and three-dimensional plots, as well as corresponding contour diagrams. The proposed analytical method not only contributes to the theoretical understanding of nonlinear wave phenomena but also demonstrates practical relevance in applied sciences, particularly in fluid mechanics and engineering contexts involving gas-liquid interactions.
用解析法建立流体中含气泡的广义非线性(3+1)维波动方程的孤波解
本文研究了广义非线性(3+1)维波动方程,利用扩展f展开法导出了各种精确的波动解,并分析了不同波浪剖面的动力行为。该研究提出了几种类型的孤子解,包括暗、亮、奇异、周期和奇异周期形式。据我们所知,这些具体的解决方案在以前的文献中没有报道过。通过给自由参数赋适当的值,得到的解的行为通过二维和三维图以及相应的等高线图来说明。所提出的分析方法不仅有助于对非线性波动现象的理论理解,而且在应用科学,特别是在流体力学和涉及气液相互作用的工程背景下,展示了实际的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信