James Cushway , J. Geoffrey Chase , Thomas Desaive , Liam Murphy , Isaac L. Flett , Geoffrey M. Shaw
{"title":"A novel clinical data acquisition device: Towards real time cardiovascular modelling in the ICU","authors":"James Cushway , J. Geoffrey Chase , Thomas Desaive , Liam Murphy , Isaac L. Flett , Geoffrey M. Shaw","doi":"10.1016/j.ohx.2025.e00696","DOIUrl":null,"url":null,"abstract":"<div><div>Patient specific cardiovascular system models have the potential to provide far greater insights into patient conditions than is currently possible in the intensive care unit (ICU). Access to haemodynamic data is imperative for the introduction and validation of these models for model-based care in the ICU. However, current bedside machines are proprietary systems and do not allow access to any data without potentially prohibitive cost, creating a barrier to research and advancements in bedside care. This work presents a novel, low-cost data capture system which allows real time capture of haemodynamic measurements, as well as fluid infusion rates in the ICU. The system consists of an Arduino controlled data capture unit, an adaptor for connecting to existing bedside pressure sensors, and a Python based application which displays and records data sent from the data capture system over a USB serial connection. The total system is highly customizable if needed, and costs a total of NZ$200.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"24 ","pages":"Article e00696"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Patient specific cardiovascular system models have the potential to provide far greater insights into patient conditions than is currently possible in the intensive care unit (ICU). Access to haemodynamic data is imperative for the introduction and validation of these models for model-based care in the ICU. However, current bedside machines are proprietary systems and do not allow access to any data without potentially prohibitive cost, creating a barrier to research and advancements in bedside care. This work presents a novel, low-cost data capture system which allows real time capture of haemodynamic measurements, as well as fluid infusion rates in the ICU. The system consists of an Arduino controlled data capture unit, an adaptor for connecting to existing bedside pressure sensors, and a Python based application which displays and records data sent from the data capture system over a USB serial connection. The total system is highly customizable if needed, and costs a total of NZ$200.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.