Joint User Activity Detection and Channel Estimation in MC-GFMA Systems by Block Sparse Bayesian Learning With Threshold Optimization

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yi Zhao;Mohammed El-Hajjar;Lie-Liang Yang
{"title":"Joint User Activity Detection and Channel Estimation in MC-GFMA Systems by Block Sparse Bayesian Learning With Threshold Optimization","authors":"Yi Zhao;Mohammed El-Hajjar;Lie-Liang Yang","doi":"10.1109/OJVT.2025.3603690","DOIUrl":null,"url":null,"abstract":"Future wireless communications are expected to support massive connectivity in various applications, such as massive Machine-Type Communications (mMTC) and different types of IoT networks, where many applications have the data traffic of sporadicnature. To support these kinds of applications, grant free multiple-access (GFMA) has been recognized to be more efficient thanthe conventional granted multiple access (GMA). However, due to sporadic transmission, GFMA faces the main challenges of User Activity Detection (UAD) and Channel Estimation (CE). To meet these challenges, in this paper, a multicarrier GFMA (MC-GFMA) system is introduced for supporting massive connectivity. A block-sparse signal model is derived, where the Expectation Maximization assisted Block Sparse Bayesian Learning (EM-BSBL) algorithm is employed to solve the joint UAD and CE problem. Furthermore, to augment the performance of EM-BSBL algorithm in GFMA systems, the statistical properties of the activity weights generated by EM-BSBL algorithm are investigated, showing that the activity weights follow closely the Gamma distribution. Then, using the Gamma modelling of the activity weights, the Neyman-Pearson (NP) method is considered for optimizing the threshold used for decision making in the EM-BSBL algorithm. Finally, the performance of GFMA systems is comprehensively studied by numerical simulations. Our results and analysis demonstrate that MC-GFMA is a feasible signalling scheme for supporting a massive number of users transmitting sporadic information. With the aid of the EM-BSBL algorithm enhanced by the NP-assisted threshold optimization, MC-GFMA is robust for operation in the communications environments where active users are random and the number of them is highly dynamic.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2441-2458"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11143207","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11143207/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Future wireless communications are expected to support massive connectivity in various applications, such as massive Machine-Type Communications (mMTC) and different types of IoT networks, where many applications have the data traffic of sporadicnature. To support these kinds of applications, grant free multiple-access (GFMA) has been recognized to be more efficient thanthe conventional granted multiple access (GMA). However, due to sporadic transmission, GFMA faces the main challenges of User Activity Detection (UAD) and Channel Estimation (CE). To meet these challenges, in this paper, a multicarrier GFMA (MC-GFMA) system is introduced for supporting massive connectivity. A block-sparse signal model is derived, where the Expectation Maximization assisted Block Sparse Bayesian Learning (EM-BSBL) algorithm is employed to solve the joint UAD and CE problem. Furthermore, to augment the performance of EM-BSBL algorithm in GFMA systems, the statistical properties of the activity weights generated by EM-BSBL algorithm are investigated, showing that the activity weights follow closely the Gamma distribution. Then, using the Gamma modelling of the activity weights, the Neyman-Pearson (NP) method is considered for optimizing the threshold used for decision making in the EM-BSBL algorithm. Finally, the performance of GFMA systems is comprehensively studied by numerical simulations. Our results and analysis demonstrate that MC-GFMA is a feasible signalling scheme for supporting a massive number of users transmitting sporadic information. With the aid of the EM-BSBL algorithm enhanced by the NP-assisted threshold optimization, MC-GFMA is robust for operation in the communications environments where active users are random and the number of them is highly dynamic.
基于阈值优化的块稀疏贝叶斯学习在MC-GFMA系统中的联合用户活动检测和信道估计
未来的无线通信有望在各种应用中支持大规模连接,例如大规模机器类型通信(mMTC)和不同类型的物联网网络,其中许多应用具有零星的数据流量。为了支持这些类型的应用程序,人们认为免费授权多址(GFMA)比传统的授权多址(GMA)更有效。然而,由于传输的零星性,GFMA面临着用户活动检测(UAD)和信道估计(CE)的主要挑战。为了应对这些挑战,本文提出了一种支持海量连接的多载波GFMA (MC-GFMA)系统。推导了一种块稀疏信号模型,采用期望最大化辅助块稀疏贝叶斯学习(EM-BSBL)算法求解UAD和CE联合问题。此外,为了提高EM-BSBL算法在GFMA系统中的性能,研究了EM-BSBL算法生成的活动权值的统计特性,结果表明,EM-BSBL算法生成的活动权值服从Gamma分布。然后,利用活动权的Gamma建模,考虑使用Neyman-Pearson (NP)方法来优化EM-BSBL算法中用于决策的阈值。最后,通过数值模拟对GFMA系统的性能进行了全面研究。研究结果和分析表明,MC-GFMA是一种支持大量用户传输零星信息的可行信号方案。MC-GFMA采用了经过np辅助阈值优化增强的EM-BSBL算法,在活跃用户随机且数量高度动态的通信环境下具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信