D. Ajitha , Muhammad Zohaib , Firdous Ahmad , Khalid Zaman , S.M. Prabin
{"title":"Efficient QCA‐Based Circuits for Low‐Power Medical IoT System","authors":"D. Ajitha , Muhammad Zohaib , Firdous Ahmad , Khalid Zaman , S.M. Prabin","doi":"10.1016/j.suscom.2025.101203","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things (IoT) plays a vital role in the recent healthcare industry by providing precise diagnostic and treatment capabilities. There is a growing interest in medical IoT incorporated into healthcare systems. The processing unit of all medical IoT comprises complementary metal-oxide semiconductor (CMOS) technology. However, CMOS Medical IoT technology has become integrated into biomedical hardware systems at the nanoscale regime. Due to regulatory, ethical, and technological challenges, including slow processing speeds, high power consumption, and slow switching frequencies, particularly in the gigahertz (GHz) range. On the other hand, compared to traditional computers, quantum technology will accelerate processing by an order of magnitude and affect all artificial and medical (AI) and medical IoT processing applications. Quantum-dot cellular automata (QCA) present a promising alternative digital hardware system in medical IoT. QCA technology makes an optimal choice for establishing circuit design frameworks for AI in medical IoT applications, where low-cost, real-time, energy-efficient performance is crucial. Moreever, encryption and decryption circuits have been used in medical IoT operations to protect sensitive patient data while it is being transmitted and stored. The essential arithmetic and logic unit (ALU) is proposed in this context, which is the foundation for processing and computational units for medical IoT systems at the nanoscale devices. A systematic approach is involved in integrating adders, multiplexers, an ALU, and a logic unit to enhance processor drive and privacy via encryption and decryption in medical IoT. The experimental outcomes reveal that the recommended design overtakes the previous design by 15.48 % in terms of cells and 16.07 % in terms of area. The designs are accurately simulated using the QCADesigner-E 2.0.3 software tool.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"48 ","pages":"Article 101203"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925001246","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) plays a vital role in the recent healthcare industry by providing precise diagnostic and treatment capabilities. There is a growing interest in medical IoT incorporated into healthcare systems. The processing unit of all medical IoT comprises complementary metal-oxide semiconductor (CMOS) technology. However, CMOS Medical IoT technology has become integrated into biomedical hardware systems at the nanoscale regime. Due to regulatory, ethical, and technological challenges, including slow processing speeds, high power consumption, and slow switching frequencies, particularly in the gigahertz (GHz) range. On the other hand, compared to traditional computers, quantum technology will accelerate processing by an order of magnitude and affect all artificial and medical (AI) and medical IoT processing applications. Quantum-dot cellular automata (QCA) present a promising alternative digital hardware system in medical IoT. QCA technology makes an optimal choice for establishing circuit design frameworks for AI in medical IoT applications, where low-cost, real-time, energy-efficient performance is crucial. Moreever, encryption and decryption circuits have been used in medical IoT operations to protect sensitive patient data while it is being transmitted and stored. The essential arithmetic and logic unit (ALU) is proposed in this context, which is the foundation for processing and computational units for medical IoT systems at the nanoscale devices. A systematic approach is involved in integrating adders, multiplexers, an ALU, and a logic unit to enhance processor drive and privacy via encryption and decryption in medical IoT. The experimental outcomes reveal that the recommended design overtakes the previous design by 15.48 % in terms of cells and 16.07 % in terms of area. The designs are accurately simulated using the QCADesigner-E 2.0.3 software tool.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.