Maximilian Zachow , Stella Ofori-Ampofo , Harald Kunstmann , Rıdvan Salih Kuzu , Xiao Xiang Zhu , Senthold Asseng
{"title":"Wheat yield forecasts with seasonal climate models and long short-term memory networks","authors":"Maximilian Zachow , Stella Ofori-Ampofo , Harald Kunstmann , Rıdvan Salih Kuzu , Xiao Xiang Zhu , Senthold Asseng","doi":"10.1016/j.compag.2025.110965","DOIUrl":null,"url":null,"abstract":"<div><div>The potential of seasonal climate forecasts (SCFs) within machine learning models to forecast crop yields remains unexplored. We propose a workflow for integrating SCF data into a long short-term memory (LSTM) network to forecast wheat yield at the county level across the Great Plains in the United States. Each month, past predictors were filled with observations and future weather predictors were forecasted using the seasonal climate model of the European Centre for Medium-Range Weather Forecasts (SCF approach). This approach was benchmarked with the truncate approach that only used observed predictors. Using all observed predictors at harvest, the model achieved an R<sup>2</sup> of 0.46, an NRMSE of 0.24, and an MSE of 0.46 t/ha on the test set. The SCF approach and truncate approach performed poorly from January to March. The SCF approach outperformed the truncate approach in April and May. At the beginning of May, three months before harvest, the SCF approach achieved an MSE of 0.6 t/ha, improving the truncate approach by 10 %. In June, the SCF approach further improved but did not outperform the truncate approach. Predictor importance analysis revealed the critical role of SCF data at the beginning of May for the latter half of May. This study suggests that weather forecasts issued at the right time, when both crop development and forecast skill align, could be as short as 16 days and still significantly improve the accuracy of sub-national wheat yield forecasts over other approaches.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"239 ","pages":"Article 110965"},"PeriodicalIF":8.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925010713","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The potential of seasonal climate forecasts (SCFs) within machine learning models to forecast crop yields remains unexplored. We propose a workflow for integrating SCF data into a long short-term memory (LSTM) network to forecast wheat yield at the county level across the Great Plains in the United States. Each month, past predictors were filled with observations and future weather predictors were forecasted using the seasonal climate model of the European Centre for Medium-Range Weather Forecasts (SCF approach). This approach was benchmarked with the truncate approach that only used observed predictors. Using all observed predictors at harvest, the model achieved an R2 of 0.46, an NRMSE of 0.24, and an MSE of 0.46 t/ha on the test set. The SCF approach and truncate approach performed poorly from January to March. The SCF approach outperformed the truncate approach in April and May. At the beginning of May, three months before harvest, the SCF approach achieved an MSE of 0.6 t/ha, improving the truncate approach by 10 %. In June, the SCF approach further improved but did not outperform the truncate approach. Predictor importance analysis revealed the critical role of SCF data at the beginning of May for the latter half of May. This study suggests that weather forecasts issued at the right time, when both crop development and forecast skill align, could be as short as 16 days and still significantly improve the accuracy of sub-national wheat yield forecasts over other approaches.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.