{"title":"Optical and structural properties of indium oxide prepared by spray pyrolysis as a NO2 and H2S gas sensor","authors":"Haidar K. Dhayef , Nisreen Ahmed Hamzah","doi":"10.1016/j.cap.2025.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>Spray pyrolysis was employed to synthesize indium oxide nanostructures. The material was characterized using energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Thin films of indium oxide (In<sub>2</sub>O<sub>3</sub>) were produced by spray pyrolysis for gas sensing applications. The films were analyzed by XRD, FESEM, EDX, and UV–Vis spectroscopy. XRD analysis revealed a cubic polycrystalline structure with crystallite sizes ranging from 12 to 17 nm, while FESEM showed grass-like nanostructures with diameters between 40 and 70 nm. UV–Vis spectroscopy indicated an optical band gap of ∼3.27 eV. The gas sensor exhibited very high sensitivity to NO<sub>2</sub> and H<sub>2</sub>S gases, with maximum sensitivities of 69.9 % and 32.25 %, respectively, at 300 °C. The device also demonstrated rapid response and recovery times, making it an ideal candidate for environmental gas detection.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 122-127"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001853","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spray pyrolysis was employed to synthesize indium oxide nanostructures. The material was characterized using energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Thin films of indium oxide (In2O3) were produced by spray pyrolysis for gas sensing applications. The films were analyzed by XRD, FESEM, EDX, and UV–Vis spectroscopy. XRD analysis revealed a cubic polycrystalline structure with crystallite sizes ranging from 12 to 17 nm, while FESEM showed grass-like nanostructures with diameters between 40 and 70 nm. UV–Vis spectroscopy indicated an optical band gap of ∼3.27 eV. The gas sensor exhibited very high sensitivity to NO2 and H2S gases, with maximum sensitivities of 69.9 % and 32.25 %, respectively, at 300 °C. The device also demonstrated rapid response and recovery times, making it an ideal candidate for environmental gas detection.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.