{"title":"Fabrication and characterisation of high response Cu/ (PVA-CdWO4) / p-Si Schottky diode for Ultraviolet photo detection","authors":"K.U. Aiswarya , K.J. Arun , M.D. Aggarwal","doi":"10.1016/j.cap.2025.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, Metal Polymer Semiconductor (M-P-S) structured Schottky Barrier Diode (SBD) with copper metal, (PVA- CdWO<sub>4</sub>) polymer nanocomposite interfacial insulating layer and p-Si as semiconductor forming (Cu/(PVA- CdWO<sub>4</sub>)/p-Si) structure is fabricated and analysed for its photo detection properties. Studies has been done to investigate how the CdWO<sub>4</sub> content influences the morphological, structural, optical and electrical properties of the PVA- CdWO<sub>4</sub> composite films. Diode under illumination shows higher current values compared to dark indicating a high photo-responsive nature of the fabricated diodes. As the power of the illuminating source increases, the ideality factor decreases and barrier height increases. The photodiode parameters like Photo sensitivity, Responsivity, Quantum efficiency and Detectivity also enhances with CdWO<sub>4</sub> concentration and the MPS diode fabricated with 10 wt% of nanoparticles shows better results when illuminated by highest power light source where a responsivity of 101.24 mA/W and detectivity of 16.20 × 10<sup>10</sup> is observed.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 108-121"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001877","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, Metal Polymer Semiconductor (M-P-S) structured Schottky Barrier Diode (SBD) with copper metal, (PVA- CdWO4) polymer nanocomposite interfacial insulating layer and p-Si as semiconductor forming (Cu/(PVA- CdWO4)/p-Si) structure is fabricated and analysed for its photo detection properties. Studies has been done to investigate how the CdWO4 content influences the morphological, structural, optical and electrical properties of the PVA- CdWO4 composite films. Diode under illumination shows higher current values compared to dark indicating a high photo-responsive nature of the fabricated diodes. As the power of the illuminating source increases, the ideality factor decreases and barrier height increases. The photodiode parameters like Photo sensitivity, Responsivity, Quantum efficiency and Detectivity also enhances with CdWO4 concentration and the MPS diode fabricated with 10 wt% of nanoparticles shows better results when illuminated by highest power light source where a responsivity of 101.24 mA/W and detectivity of 16.20 × 1010 is observed.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.