Operando interlayer expansion of multiscale curved graphene for volumetrically-efficient supercapacitors

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Petar Jovanović, Meysam Sharifzadeh Mirshekarloo, Phillip Aitchison, Mahdokht Shaibani, Mainak Majumder
{"title":"Operando interlayer expansion of multiscale curved graphene for volumetrically-efficient supercapacitors","authors":"Petar Jovanović, Meysam Sharifzadeh Mirshekarloo, Phillip Aitchison, Mahdokht Shaibani, Mainak Majumder","doi":"10.1038/s41467-025-63485-0","DOIUrl":null,"url":null,"abstract":"<p>Supercapacitors deliver high power but are limited in compact applications by low volumetric energy and power densities. Two-dimensional materials like graphene, despite their high packing density, are hindered by poor ion transport kinetics. A rapid thermal annealing step generates unusually curved turbostratic graphene crystallites, integrated and interwoven within disordered domains in micron-size particles to yield multiscale graphene. Ion insertion into the interlayers enables precise pore-ion matching and partial charge transfer, enabling a high Brunauer-Emmett-Teller surface area-normalized capacitance of 85 µF/cm<sup>2</sup>. Here, we show that multiscale graphene exhibits rapid ion transport dynamics within the curved crystallites and disordered domains. When the thin electrodes are assembled into symmetric pouch cell devices, they deliver a stack-level volumetric energy density of 99.5 Wh/L in ionic liquid electrolytes and 49.2 Wh/L in organic electrolyte with a high power density of 69.2 kW/L at 9.6 Wh/L.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"78 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63485-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors deliver high power but are limited in compact applications by low volumetric energy and power densities. Two-dimensional materials like graphene, despite their high packing density, are hindered by poor ion transport kinetics. A rapid thermal annealing step generates unusually curved turbostratic graphene crystallites, integrated and interwoven within disordered domains in micron-size particles to yield multiscale graphene. Ion insertion into the interlayers enables precise pore-ion matching and partial charge transfer, enabling a high Brunauer-Emmett-Teller surface area-normalized capacitance of 85 µF/cm2. Here, we show that multiscale graphene exhibits rapid ion transport dynamics within the curved crystallites and disordered domains. When the thin electrodes are assembled into symmetric pouch cell devices, they deliver a stack-level volumetric energy density of 99.5 Wh/L in ionic liquid electrolytes and 49.2 Wh/L in organic electrolyte with a high power density of 69.2 kW/L at 9.6 Wh/L.

Abstract Image

体积高效超级电容器用多尺度弯曲石墨烯的可操作性层间膨胀
超级电容器提供高功率,但在紧凑型应用中受到低体积能量和功率密度的限制。像石墨烯这样的二维材料,尽管其包装密度很高,但由于离子传输动力学差而受到阻碍。快速热退火步骤生成异常弯曲的涡层石墨烯晶体,在微米尺寸的颗粒中集成和交织在无序区域中以产生多尺度石墨烯。离子插入到中间层中可以实现精确的孔离子匹配和部分电荷转移,从而实现85 μ F/cm2的高布鲁诺尔-埃米特-泰勒表面积归一化电容。在这里,我们证明了多尺度石墨烯在弯曲晶体和无序畴内表现出快速的离子传输动力学。当薄电极组装成对称的袋状电池器件时,它们在离子液体电解质中提供99.5 Wh/L的堆叠级体积能量密度,在有机电解质中提供49.2 Wh/L的体积能量密度,在9.6 Wh/L时提供69.2 kW/L的高功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信