Ultraconfined terahertz phonon polaritons in hafnium dichalcogenides

IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ryan A. Kowalski, Niclas S. Mueller, Gonzalo Álvarez-Pérez, Maximilian Obst, Katja Diaz-Granados, Giulia Carini, Aditha Senarath, Saurabh Dixit, Richarda Niemann, Raghunandan B. Iyer, Felix G. Kaps, Jakob Wetzel, J. Michael Klopf, Ivan I. Kravchenko, Martin Wolf, Thomas G. Folland, Lukas M. Eng, Susanne C. Kehr, Pablo Alonso-Gonzalez, Alexander Paarmann, Joshua D. Caldwell
{"title":"Ultraconfined terahertz phonon polaritons in hafnium dichalcogenides","authors":"Ryan A. Kowalski, Niclas S. Mueller, Gonzalo Álvarez-Pérez, Maximilian Obst, Katja Diaz-Granados, Giulia Carini, Aditha Senarath, Saurabh Dixit, Richarda Niemann, Raghunandan B. Iyer, Felix G. Kaps, Jakob Wetzel, J. Michael Klopf, Ivan I. Kravchenko, Martin Wolf, Thomas G. Folland, Lukas M. Eng, Susanne C. Kehr, Pablo Alonso-Gonzalez, Alexander Paarmann, Joshua D. Caldwell","doi":"10.1038/s41563-025-02345-0","DOIUrl":null,"url":null,"abstract":"<p>The confinement of electromagnetic radiation to subwavelength scales relies on strong light–matter interactions. In the infrared and terahertz spectral ranges, phonon polaritons are commonly employed to achieve deeply subdiffractional light confinement, with such optical modes offering much lower losses in comparison to plasmon polaritons. Among these, hyperbolic phonon polaritons in anisotropic materials offer a promising platform for light confinement. Here we report on ultraconfined phonon polaritons in hafnium-based dichalcogenides with confinement factors exceeding <i>λ</i><sub>0</sub>/250 in the terahertz spectral range. This extreme light compression within deeply subwavelength thin films is enabled by the large magnitude of the light–matter coupling strength in these compounds and the natural hyperbolicity of HfSe<sub>2</sub>. Our findings emphasize the role of light–matter coupling for polariton confinement, which for phonon polaritons in polar dielectrics is dictated by the transverse–longitudinal optical phonon energy splitting. Our results demonstrate transition-metal dichalcogenides as an enabling platform for terahertz nanophotonic applications.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"70 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02345-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The confinement of electromagnetic radiation to subwavelength scales relies on strong light–matter interactions. In the infrared and terahertz spectral ranges, phonon polaritons are commonly employed to achieve deeply subdiffractional light confinement, with such optical modes offering much lower losses in comparison to plasmon polaritons. Among these, hyperbolic phonon polaritons in anisotropic materials offer a promising platform for light confinement. Here we report on ultraconfined phonon polaritons in hafnium-based dichalcogenides with confinement factors exceeding λ0/250 in the terahertz spectral range. This extreme light compression within deeply subwavelength thin films is enabled by the large magnitude of the light–matter coupling strength in these compounds and the natural hyperbolicity of HfSe2. Our findings emphasize the role of light–matter coupling for polariton confinement, which for phonon polaritons in polar dielectrics is dictated by the transverse–longitudinal optical phonon energy splitting. Our results demonstrate transition-metal dichalcogenides as an enabling platform for terahertz nanophotonic applications.

Abstract Image

二硫化物铪中的超约束太赫兹声子极化子
将电磁辐射限制在亚波长尺度依赖于强光-物质相互作用。在红外和太赫兹光谱范围内,声子极化子通常用于实现深度亚衍射光约束,与等离子激元极化子相比,这种光学模式提供了更低的损耗。其中,各向异性材料中的双曲声子极化为光约束提供了一个有前途的平台。本文报道了在太赫兹光谱范围内约束因子超过λ0/250的铪基二硫化物中的超约束声子极化子。这种深度亚波长薄膜中的极端光压缩是由这些化合物的光-物质耦合强度和HfSe2的天然双曲性的大幅度实现的。我们的研究结果强调了光-物质耦合在极化子约束中的作用,这对于极性介质中的声子极化子来说是由横向纵向光学声子能量分裂决定的。我们的研究结果表明,过渡金属二硫族化合物是太赫兹纳米光子应用的有利平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信