Gizem Karacaoglan , Maxime Thibault , Julien Roger , Nadine Pirio , Katia Fajerwerg , Myrtil L. Kahn , Umit B. Demirci , Jean-Cyrille Hierso
{"title":"Chemical hydrogen storage materials – boranes and silanes catalytic solvolysis and dehydrogenation: a mechanistic and regeneration perspective","authors":"Gizem Karacaoglan , Maxime Thibault , Julien Roger , Nadine Pirio , Katia Fajerwerg , Myrtil L. Kahn , Umit B. Demirci , Jean-Cyrille Hierso","doi":"10.1016/j.ccr.2025.217094","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen (H<sub>2</sub>) has gained a lot of interest as an alternative energy vector, to reduce greenhouse gas emission issues caused by the fossil fuel industry. However, to make hydrogen a real energy carrier in a decarbonated economy, a secure and sustainable supply chain is needed. This approach requires notably safe storage and efficient strategies for recycling of raw materials. We discuss in this survey the state-of-the-art in the field of chemical hydrogen storage (CHS) materials, considering two possible vectors: ammonia borane and hydrosilanes. Regardless of the vector, to achieve real use, it is necessary to understand both the performance of the system and its life cycle, which relates to catalysts structure, and the activation of chemical bonds with efficient and complete catalytic cycles. We give herein an overview of hydrolysis and/or alcoholysis from metals, using coordination complexes, molecular supported catalysts or other materials, including nanocatalysts, with a focus on mechanistic information and understanding. Notably, the studies related to these two vectors can be considered somewhat complementary. Thus, the set of bibliographic report on ammonia borane is very documented in efficient catalytic systems, while its recycling remains at a very early stage. In comparison, hydrosilanes have been much less addressed specifically as a vector for hydrogen, while their reactivity at the molecular scale benefits from a relevant understanding from coordination chemistry studies. In addition, both hydrosilane polymerization and solvolysis reaction enables the release of H<sub>2</sub>, and produces by-products of which added value is already established. This opening the way to economical strategies where recycling can be optional. Nevertheless, the reversibility of hydrosilanes chemistry in H<sub>2</sub> uptake remains attractive and is another option to develop.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"548 ","pages":"Article 217094"},"PeriodicalIF":23.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854525006642","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen (H2) has gained a lot of interest as an alternative energy vector, to reduce greenhouse gas emission issues caused by the fossil fuel industry. However, to make hydrogen a real energy carrier in a decarbonated economy, a secure and sustainable supply chain is needed. This approach requires notably safe storage and efficient strategies for recycling of raw materials. We discuss in this survey the state-of-the-art in the field of chemical hydrogen storage (CHS) materials, considering two possible vectors: ammonia borane and hydrosilanes. Regardless of the vector, to achieve real use, it is necessary to understand both the performance of the system and its life cycle, which relates to catalysts structure, and the activation of chemical bonds with efficient and complete catalytic cycles. We give herein an overview of hydrolysis and/or alcoholysis from metals, using coordination complexes, molecular supported catalysts or other materials, including nanocatalysts, with a focus on mechanistic information and understanding. Notably, the studies related to these two vectors can be considered somewhat complementary. Thus, the set of bibliographic report on ammonia borane is very documented in efficient catalytic systems, while its recycling remains at a very early stage. In comparison, hydrosilanes have been much less addressed specifically as a vector for hydrogen, while their reactivity at the molecular scale benefits from a relevant understanding from coordination chemistry studies. In addition, both hydrosilane polymerization and solvolysis reaction enables the release of H2, and produces by-products of which added value is already established. This opening the way to economical strategies where recycling can be optional. Nevertheless, the reversibility of hydrosilanes chemistry in H2 uptake remains attractive and is another option to develop.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.