Neutron-quark Stars: Discerning Viable Alternatives for the Higher-density Part of the Equation of State of Compact Stars

Sudipta Hensh, Yong-Jia Huang, Toru Kojo, Luca Baiotti, Kentaro Takami, Shigehiro Nagataki and Hajime Sotani
{"title":"Neutron-quark Stars: Discerning Viable Alternatives for the Higher-density Part of the Equation of State of Compact Stars","authors":"Sudipta Hensh, Yong-Jia Huang, Toru Kojo, Luca Baiotti, Kentaro Takami, Shigehiro Nagataki and Hajime Sotani","doi":"10.3847/2041-8213/ae0031","DOIUrl":null,"url":null,"abstract":"We investigate binary neutron star (BNS) mergers using general-relativistic numerical simulations with hadronic and hybrid equations of state (EOSs), incorporating the latest observations and theoretical constraints. We address two viable scenarios for the transition to quark matter: a quark-hadron crossover (QHC) or a strong first-order phase transition (1PT). To distinguish between different models, we define neutron-quark stars (NQSs) as configurations where quark effects emerge at masses below the lowest observed neutron-star mass. While traditional “hybrid stars” may be distinguished by purely hadronic configurations through mass–radius measurements, the mass–radius relations of NQSs resemble those of purely hadronic models, with no sharp boundary between hadrons and quarks. The name NQS effectively captures the absence of a phase boundary between hadrons and quarks in QHC scenarios. Our results indicate that QHC models can be distinguished from hadronic ones if both the inspiral and postmerger gravitational waves (GWs) are observed. In particular, the dominant postmerger frequency (f2) tends to be lower than in hadronic models with the same tidal deformability (Λ). We also present the first general-relativistic simulations of BNS mergers where the stars already contain quark matter before merging. These involve a strong 1PT at 1.8 times nuclear saturation density, followed by a stiff quark EOS. Finally, we identify a robust linear correlation between the total GW energy emitted after the merger and the f2 frequency. Remarkably, this relation holds regardless of the quark presence.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ae0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate binary neutron star (BNS) mergers using general-relativistic numerical simulations with hadronic and hybrid equations of state (EOSs), incorporating the latest observations and theoretical constraints. We address two viable scenarios for the transition to quark matter: a quark-hadron crossover (QHC) or a strong first-order phase transition (1PT). To distinguish between different models, we define neutron-quark stars (NQSs) as configurations where quark effects emerge at masses below the lowest observed neutron-star mass. While traditional “hybrid stars” may be distinguished by purely hadronic configurations through mass–radius measurements, the mass–radius relations of NQSs resemble those of purely hadronic models, with no sharp boundary between hadrons and quarks. The name NQS effectively captures the absence of a phase boundary between hadrons and quarks in QHC scenarios. Our results indicate that QHC models can be distinguished from hadronic ones if both the inspiral and postmerger gravitational waves (GWs) are observed. In particular, the dominant postmerger frequency (f2) tends to be lower than in hadronic models with the same tidal deformability (Λ). We also present the first general-relativistic simulations of BNS mergers where the stars already contain quark matter before merging. These involve a strong 1PT at 1.8 times nuclear saturation density, followed by a stiff quark EOS. Finally, we identify a robust linear correlation between the total GW energy emitted after the merger and the f2 frequency. Remarkably, this relation holds regardless of the quark presence.
中子夸克星:为致密星状态方程的高密度部分寻找可行的选择
本文利用强子和混合状态方程(EOSs),结合最新观测和理论约束,利用广义相对论数值模拟研究了双中子星(BNS)合并。我们提出了向夸克物质过渡的两种可行方案:夸克-强子交叉(QHC)或强一阶相变(1PT)。为了区分不同的模型,我们将中子-夸克星(NQSs)定义为在质量低于观测到的最低中子星质量时出现夸克效应的构型。虽然传统的“混合星”可以通过质量-半径测量来区分为纯强子构型,但NQSs的质量-半径关系类似于纯强子模型,强子和夸克之间没有明显的边界。NQS这个名字有效地捕捉到了在QHC场景中强子和夸克之间没有相边界的现象。我们的结果表明,如果同时观测到引力波和合并后引力波,QHC模型可以与强子模型区分开来。特别是,主要的合并后频率(f2)往往比具有相同潮汐变形能力的强子模型低(Λ)。我们还提出了BNS合并的第一个广义相对论模拟,其中恒星在合并之前已经包含夸克物质。其中包括1.8倍核饱和密度的强1PT,随后是一个硬夸克EOS。最后,我们确定了合并后发射的总GW能量与f2频率之间存在强大的线性相关关系。值得注意的是,无论夸克是否存在,这种关系都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信