{"title":"Smartphone-Based Fluorescence/Colorimetric Dual-Mode Aptasensor for the Detection of Salmonella Using Multivalent Aptamer and CHA Amplification","authors":"Wenxue Xiao, , , Chengjie Sun, , , Shu Chen, , , Liangliang Xue, , , Huamao Wei, , , Ru Jia, , , Tao Huang, , , Wenge Yang, , , Jiali Xing, , , Enguang Zuo, , and , Zhaohui Qiao*, ","doi":"10.1021/acssensors.5c00936","DOIUrl":null,"url":null,"abstract":"<p >Foodborne diseases attributed to <i>Salmonella</i> represent a substantial public health concern, necessitating the development of rapid and sensitive detection methodologies. In this study, we constructed a dual-mode fluorescent/colorimetric aptasensor, leveraging multivalent aptamer competitive assays and catalytic hairpin assembly (CHA), and integrated it with a smartphone-based portable device to expedite the detection of <i>Salmonella</i>. In this detection system, the tetrahedral DNA nanostructure-based multivalent aptamer competitive probe was designed to achieve primary signal amplification by recognizing target bacteria with high binding avidity and releasing a substantial amount of cDNA. The released cDNA subsequently triggers fluorescent and colorimetric signal readout through CHA-mediated secondary signal amplification, facilitating sensitive detection with self-referenced correction in both signal modes. The concentration of bacteria can be captured and analyzed using a smartphone-based portable device. Consequently, this method enables the quantitative detection of <i>Salmonella</i> within a linear range of 10 to 10<sup>7</sup> CFU/mL, with detection limits of 28 CFU/mL for colorimetric detection and 10 CFU/mL for fluorescent detection. Additionally, the methods demonstrated high specificity in milk, egg, cod, and chicken samples, demonstrating its practical applicability. The inherent versatility of aptamers additionally permits the potential detection of other bacterial pathogens, rendering this platform a valuable tool for food safety monitoring and clinical diagnostics.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 9","pages":"6542–6552"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.5c00936","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Foodborne diseases attributed to Salmonella represent a substantial public health concern, necessitating the development of rapid and sensitive detection methodologies. In this study, we constructed a dual-mode fluorescent/colorimetric aptasensor, leveraging multivalent aptamer competitive assays and catalytic hairpin assembly (CHA), and integrated it with a smartphone-based portable device to expedite the detection of Salmonella. In this detection system, the tetrahedral DNA nanostructure-based multivalent aptamer competitive probe was designed to achieve primary signal amplification by recognizing target bacteria with high binding avidity and releasing a substantial amount of cDNA. The released cDNA subsequently triggers fluorescent and colorimetric signal readout through CHA-mediated secondary signal amplification, facilitating sensitive detection with self-referenced correction in both signal modes. The concentration of bacteria can be captured and analyzed using a smartphone-based portable device. Consequently, this method enables the quantitative detection of Salmonella within a linear range of 10 to 107 CFU/mL, with detection limits of 28 CFU/mL for colorimetric detection and 10 CFU/mL for fluorescent detection. Additionally, the methods demonstrated high specificity in milk, egg, cod, and chicken samples, demonstrating its practical applicability. The inherent versatility of aptamers additionally permits the potential detection of other bacterial pathogens, rendering this platform a valuable tool for food safety monitoring and clinical diagnostics.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.