Mechanism of Protein-Directed Biomimetic Mineralization in Metal–Organic Frameworks

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-14 DOI:10.1021/acsnano.5c13712
Weili Qiao, , , Canyu Zhang, , , Hui Liang, , , Wenyong Lou, , , Jun Ge*, , and , Yufei Cao*, 
{"title":"Mechanism of Protein-Directed Biomimetic Mineralization in Metal–Organic Frameworks","authors":"Weili Qiao,&nbsp;, ,&nbsp;Canyu Zhang,&nbsp;, ,&nbsp;Hui Liang,&nbsp;, ,&nbsp;Wenyong Lou,&nbsp;, ,&nbsp;Jun Ge*,&nbsp;, and ,&nbsp;Yufei Cao*,&nbsp;","doi":"10.1021/acsnano.5c13712","DOIUrl":null,"url":null,"abstract":"<p >Protein@metal–organic frameworks (MOFs) have emerged as promising biohybrid materials with diverse applications in catalysis, drug delivery, and biosensing. Their capability to protect proteins─particularly enzymes─under harsh conditions, enhance catalytic performance, and facilitate the spatial organization of multiple biomolecules has garnered great attention. Despite the growing adoption of protein@MOF, a fundamental question remains: how are proteins encapsulated within MOFs during nucleation or crystal growth? Herein, we combine molecular dynamics simulations and experiments to elucidate the detailed mechanism of protein encapsulation during biomimetic mineralization, using the zeolitic imidazolate framework (ZIF-8) as a model system. Simulations reveal that stable protein-metal–ligand complexes do not form directly in precursor solutions. Instead, proteins influence ZIF-8 nucleation and crystal growth through negatively charged or metal-coordinating residues, which bind partially positive Zn<sup>2+</sup> sites on the amorphous phase or nascent nuclei. In this way, proteins promote particle aggregation or act as capping agents, facilitating nucleation or crystal growth processes while simultaneously enabling protein encapsulation. In contrast, positively charged proteins experience electrostatic repulsion, limiting their encapsulation. Experimental results corroborate this mechanism by studying the growth kinetics of protein@MOF formation. Furthermore, leveraging this mechanism enables the construction of hierarchical assemblies containing multiple proteins with spatial organization. These findings enhance our understanding of how protein surface properties guide MOF assembly, providing a foundation for the rational design of protein@MOF composites with tailored morphologies and improved functionalities for diverse biorelevant applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 37","pages":"33655–33664"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c13712","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein@metal–organic frameworks (MOFs) have emerged as promising biohybrid materials with diverse applications in catalysis, drug delivery, and biosensing. Their capability to protect proteins─particularly enzymes─under harsh conditions, enhance catalytic performance, and facilitate the spatial organization of multiple biomolecules has garnered great attention. Despite the growing adoption of protein@MOF, a fundamental question remains: how are proteins encapsulated within MOFs during nucleation or crystal growth? Herein, we combine molecular dynamics simulations and experiments to elucidate the detailed mechanism of protein encapsulation during biomimetic mineralization, using the zeolitic imidazolate framework (ZIF-8) as a model system. Simulations reveal that stable protein-metal–ligand complexes do not form directly in precursor solutions. Instead, proteins influence ZIF-8 nucleation and crystal growth through negatively charged or metal-coordinating residues, which bind partially positive Zn2+ sites on the amorphous phase or nascent nuclei. In this way, proteins promote particle aggregation or act as capping agents, facilitating nucleation or crystal growth processes while simultaneously enabling protein encapsulation. In contrast, positively charged proteins experience electrostatic repulsion, limiting their encapsulation. Experimental results corroborate this mechanism by studying the growth kinetics of protein@MOF formation. Furthermore, leveraging this mechanism enables the construction of hierarchical assemblies containing multiple proteins with spatial organization. These findings enhance our understanding of how protein surface properties guide MOF assembly, providing a foundation for the rational design of protein@MOF composites with tailored morphologies and improved functionalities for diverse biorelevant applications.

Abstract Image

金属-有机框架中蛋白质导向的仿生矿化机制。
Protein@metal-organic框架(mof)已成为一种有前途的生物杂化材料,在催化、药物传递和生物传感等方面具有多种应用。它们在恶劣条件下保护蛋白质(尤其是酶)、增强催化性能和促进多种生物分子的空间组织的能力引起了人们的极大关注。尽管越来越多的人采用protein@MOF,但一个基本的问题仍然存在:在成核或晶体生长过程中,蛋白质是如何被包裹在mof内的?本文采用分子动力学模拟和实验相结合的方法,以沸石咪唑酸框架(ZIF-8)为模型体系,阐明了仿生矿化过程中蛋白质包封的详细机制。模拟结果表明,稳定的蛋白质-金属-配体复合物不会在前体溶液中直接形成。相反,蛋白质通过带负电荷或金属配位残基影响ZIF-8的成核和晶体生长,这些残基结合非晶相或新生核上的部分正电荷Zn2+位点。通过这种方式,蛋白质促进颗粒聚集或充当封盖剂,促进成核或晶体生长过程,同时使蛋白质被包裹。相反,带正电荷的蛋白质经历静电排斥,限制了它们的封装。实验结果通过研究protein@MOF地层的生长动力学证实了这一机制。此外,利用这种机制可以构建包含多个具有空间组织的蛋白质的分层组装。这些发现增强了我们对蛋白质表面特性如何指导MOF组装的理解,为合理设计具有定制形态和改进功能的protein@MOF复合材料提供了基础,可用于各种生物相关应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信