{"title":"Transgenic barley over-expressing Aspergillus niger phytase phyA in field trials.","authors":"T Vlčko,V Psota,R Koprna,W Harwood,L Ohnoutková","doi":"10.1080/21645698.2025.2559488","DOIUrl":null,"url":null,"abstract":"Phytic acid is the main storage of phosphate in grains of staple crops. As phytic acid is hardly digestible for non-ruminants microbial phytases are used to supplement animal feed to enhance phosphate digestibility. A fungal phytase gene was introduced into barley with the aim of enhancing phosphate digestibility. Transgenic homozygous barley over-expressing fungal phytase phyA showed a 3.3fold increase in mature grain phytase activity. Field trials at two locations in the Czech Republic were conducted in a five-year experiment to test transgene stability and activity under field conditions. Increased phytase activity gradually decreased over the generations showing the most significant drop in the initial years of field trials. Molecular analysis revealed methylation in the coding sequence of the phyA transgene, suggesting transcription gene silencing. On the other hand, herbicide resistance used for selection of transgenic plants was functional over all generations. The feasibility of crossing the transgene into the feeding cultivar Azit was demonstrated with subsequent stabilization of hybrid progeny through androgenesis. Our results indicate that the Azit genetic background tended to reduce phytase activity in mature grains of hybrids. Grain-specific over-expression of fungal phytase driven by an amylase promoter improved phosphate levels during germination. Unfortunately, a malting experiment revealed that phytase over-expression did not significantly improve malting parameters. In fact, the higher nitrogen content in unmalted grain negatively affected the quality of the malt produced from them.","PeriodicalId":501763,"journal":{"name":"GM Crops & Food","volume":"3 1","pages":"607-625"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GM Crops & Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21645698.2025.2559488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phytic acid is the main storage of phosphate in grains of staple crops. As phytic acid is hardly digestible for non-ruminants microbial phytases are used to supplement animal feed to enhance phosphate digestibility. A fungal phytase gene was introduced into barley with the aim of enhancing phosphate digestibility. Transgenic homozygous barley over-expressing fungal phytase phyA showed a 3.3fold increase in mature grain phytase activity. Field trials at two locations in the Czech Republic were conducted in a five-year experiment to test transgene stability and activity under field conditions. Increased phytase activity gradually decreased over the generations showing the most significant drop in the initial years of field trials. Molecular analysis revealed methylation in the coding sequence of the phyA transgene, suggesting transcription gene silencing. On the other hand, herbicide resistance used for selection of transgenic plants was functional over all generations. The feasibility of crossing the transgene into the feeding cultivar Azit was demonstrated with subsequent stabilization of hybrid progeny through androgenesis. Our results indicate that the Azit genetic background tended to reduce phytase activity in mature grains of hybrids. Grain-specific over-expression of fungal phytase driven by an amylase promoter improved phosphate levels during germination. Unfortunately, a malting experiment revealed that phytase over-expression did not significantly improve malting parameters. In fact, the higher nitrogen content in unmalted grain negatively affected the quality of the malt produced from them.