ACP-EPC: an interpretable deep learning framework for anticancer peptide prediction utilizing pre-trained protein language model and multi-view feature extracting strategy.
{"title":"ACP-EPC: an interpretable deep learning framework for anticancer peptide prediction utilizing pre-trained protein language model and multi-view feature extracting strategy.","authors":"Jingwei Lv, Kexin Li, Yike Wang, Junlin Xu, Yajie Meng, Feifei Cui, Leyi Wei, Qingchen Zhang, Zilong Zhang","doi":"10.1007/s11030-025-11352-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains a major global health challenge, as conventional chemotherapy often causes extensive damage to healthy cells and leads to severe side effects. Anticancer peptides (ACPs) have emerged as a promising therapeutic alternative, capable of selectively targeting and eliminating cancer cells while improving patient quality of life and treatment outcomes. Nevertheless, identifying ACPs through traditional biological experiments is both labor-intensive and time-consuming. To address this limitation, we developed ACP-EPC, a deep learning framework which predicts ACPs directly from protein sequences. ACP-EPC integrates contextual representations from Evolutionary Scale Modeling 2 (ESM-2) with handcrafted physicochemical descriptors and employs a Cross-Attention mechanism for multimodal feature fusion. The model was rigorously evaluated using tenfold cross-validation and two test sets, ACP135 and ACP99, achieving accuracy of 0.935 and 0.984, respectively. These results substantially outperform existing models, underscoring the advantages of combining diverse feature representations. To promote accessibility, we have also deployed ACP-EPC as a publicly available web server at http://www.bioai-lab.com/ACP-EPC .</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11352-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer remains a major global health challenge, as conventional chemotherapy often causes extensive damage to healthy cells and leads to severe side effects. Anticancer peptides (ACPs) have emerged as a promising therapeutic alternative, capable of selectively targeting and eliminating cancer cells while improving patient quality of life and treatment outcomes. Nevertheless, identifying ACPs through traditional biological experiments is both labor-intensive and time-consuming. To address this limitation, we developed ACP-EPC, a deep learning framework which predicts ACPs directly from protein sequences. ACP-EPC integrates contextual representations from Evolutionary Scale Modeling 2 (ESM-2) with handcrafted physicochemical descriptors and employs a Cross-Attention mechanism for multimodal feature fusion. The model was rigorously evaluated using tenfold cross-validation and two test sets, ACP135 and ACP99, achieving accuracy of 0.935 and 0.984, respectively. These results substantially outperform existing models, underscoring the advantages of combining diverse feature representations. To promote accessibility, we have also deployed ACP-EPC as a publicly available web server at http://www.bioai-lab.com/ACP-EPC .
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;