Autonomous Artificial Molecular Motors and Pumps

IF 3.1 Q2 CHEMISTRY, MULTIDISCIPLINARY
Dr. Chiara Taticchi, Dr. Massimiliano Curcio, Dr. Stefano Corra
{"title":"Autonomous Artificial Molecular Motors and Pumps","authors":"Dr. Chiara Taticchi,&nbsp;Dr. Massimiliano Curcio,&nbsp;Dr. Stefano Corra","doi":"10.1002/syst.202400101","DOIUrl":null,"url":null,"abstract":"<p>Over the past decade there has been a tremendous development of systems capable to autonomously convert energy, in particular light and chemical, into directed motion at the nanoscale. These nanoscopic devices are called molecular motors. The autonomous operation of artificial molecular motors and pumps under constant experimental conditions represents a key achievement to their implementation into more sophisticated networks. Nonetheless, the principles behind successful autonomous operation are only recently being rationalized. Within this review we focus on the fundamental aspects that enable the autonomous operation of molecular motors exploiting light and chemical energy. We also compare the mechanisms of operation with these two energy sources and highlight the common ground of these systems as well as their differences and specificities by discussing a selection of recent examples in the two classes. Finally, we provide a perspective view on future advances in this exciting research area.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"7 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/syst.202400101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade there has been a tremendous development of systems capable to autonomously convert energy, in particular light and chemical, into directed motion at the nanoscale. These nanoscopic devices are called molecular motors. The autonomous operation of artificial molecular motors and pumps under constant experimental conditions represents a key achievement to their implementation into more sophisticated networks. Nonetheless, the principles behind successful autonomous operation are only recently being rationalized. Within this review we focus on the fundamental aspects that enable the autonomous operation of molecular motors exploiting light and chemical energy. We also compare the mechanisms of operation with these two energy sources and highlight the common ground of these systems as well as their differences and specificities by discussing a selection of recent examples in the two classes. Finally, we provide a perspective view on future advances in this exciting research area.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

自主人工分子马达和泵
在过去的十年里,能够自主地将能量,特别是光能和化学能转化为纳米级定向运动的系统取得了巨大的发展。这些纳米级的装置被称为分子马达。人工分子马达和泵在恒定实验条件下的自主操作是将其应用于更复杂网络的关键成就。尽管如此,成功的自主操作背后的原则直到最近才被合理化。在这篇综述中,我们重点介绍了使利用光能和化学能的分子马达能够自主运行的基本方面。我们还比较了这两种能源的运行机制,并通过讨论两门课上最近的一些例子,强调了这些系统的共同点以及它们的差异和特殊性。最后,我们对这一令人兴奋的研究领域的未来进展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信